

Class: 12

Subject: Chemistry

Topic: Electrochemistry No. of Questions: 20 Duration: 60 Min Maximum Marks: 60

- **1.** The concept that an acid is a proton donor and a base is a proton acceptor was introduced by
 - a. Arrhenius
 - b. Bronsted Lowry
 - c. Lewis
 - d. Faraday

Ans. B

- 2. The number of H⁺ ion is 1 mole of water 25°C is
 - a. 10⁻⁷
 - b. 107
 - c. 6.022×10^{23}
 - d. 6.022′10¹⁶

Ans. D

Solution:

[H+] in water =
$$10^{-7}$$
 moles at 25°C

1 mole of ions =
$$6.022 \times 10^{23}$$
 ions

$$10^{-7}$$
 moles = 6.022×10^{16} ions

- 3. What is the pH of a solution where hydroxyl ion concentration is 2×10^{-2}
 - a. 2
 - b. 12
 - c. 12.301
 - d. 1.699

Ans. c

Solution:

pOH =
$$-\log 2 \times 10^{-2} = 2 - \log 2 = 1.699$$

pH = $14 - 1.699 = 12.301$

- 4. Salts of metal A and B were separately electrolysed. Atomic mass of A is 108 and that of B is 64. At the end of electrolysis the mass of A and B deposited were 5.4g and 1.6 g respectively. The valencies of A and B are
 - a. 2, 1
 - b. 1, 2
 - c. 1, 1
 - d. 2, 2

Ans. B

$$\frac{\text{Mass of A}}{\text{Eq. mass of A}} = \frac{\text{Mass of B}}{\text{Eq. mass of B}}$$

Eq. mass of A & B respective ly are
$$\frac{108}{\text{Valency of A}}$$
 and $\frac{64}{\text{Valency of B}}$

$$\frac{\frac{5.4}{1108}}{\text{Valencey of A}} = \frac{\frac{1.6}{64}}{\text{Valencey of B}} \quad \text{On simplicati} \quad \text{on we get } \frac{\text{Valency of A}}{\text{Valencey of B}} = \frac{1}{2}$$

So valencies are in the ratio 1:2

- 5. When 9.65 coulombs of electricity is passed through a solution of silver nitrate (atomic mass of Ag = 108.0 gmol-1). The amount of silver deposited is
 - a. 6.4 mg
 - b. 10.8 mg
 - c. 21.2 mg
 - d. 16.2 mg

Ans. B

Solution:

9.65

9

Mass of Ag =
$$\frac{108 \times 9.65}{96500}$$
 = 0.0108 g = 10.8 mg

- 6. What is the pH of the solution obtained by mixing $250~\rm cm^3~45of$ a solution of pH 3 and $750~\rm cm^3$ of a solution pH 5
 - a. 45
 - b. 4
 - c. 3.3
 - d. 3.6

Ans. D

Solution:

Amt of [H+] present in 250 cm3 and 750 cm3 of solution of pH3 and pH5 are

$$\frac{10^{-3} \times 250}{1000}$$
 and $\frac{10^{-5} \times 250}{1000}$ respective ly

The total volume of the solution is one litre and it contains $\left(\frac{10^{-5} \times 250}{1000} + \frac{10^{-5} \times 250}{1000}\right)$

moles of H+, that is

$$[H^+] = 2.575 \times 10^{-4} \text{ mol. dm}^{-3}$$

 $\therefore pH = -\log 2.575 \times 10^{-4} = 4 - \log 2.575$

7. Electrolysis of KCl. MgCl2 6H2O gives

= 4 - 0.41 = 3.59 or 3.6

- a. potassium only
- b. magnesium only
- c. magnesium and chlorine
- d. potassium and magnesium

Ans. C

- 8. An example for a Lewis acid is
 - a. calcium chloride
 - b. aluminium chloride
 - c. magnesium chloride
 - d. zinc chloride

Ans. B

- 9. The E.M.F. of a galvanic cell constituted with the electrodes Zn^{2+} / Zn (- 0.76 V) and cu^{2+} / Cu (0.34 V) is
 - a. 0.42 V
 - b. 1.1 V
 - c. -1.1 V
 - d. -0.42 V

Ans. B

Solution:

Cell is Zn²⁺ / Zn // Cu²⁺ / Cu
$$\therefore$$
 E_{Cell} = E_{Cu} - E_{Zn} = 1.1 V

- 10. An example for a strong electrolyte is
 - a. ammonium hydroxide
 - b. Urea
 - c. Sodium acetate
 - d. Sugar

Ans. C

Solution:

All salts are strong electrolytes. So sodium acetate is a strong electrolyte. NH₄OH is a weak electroylte. Urea and sugar are nonelectrolytes

- 11. Which of the following is not an example of a Lewis acid?
 - a. AlCl₃
 - b. FeCl₃
 - c. BF₃
 - d. CH₃COOH

Ans. D

- 12. Identify a species which is not a Bronsted acid but is a Lewis acid
 - a. BF_3
 - b. H₃O⁺
 - c. NH₃
 - d. HCl

Ans. A

Solution:

Proton donor is a Bronsted acid and electron pair acceptor is a Lewis acid. BF3 does not donate a proton but can accept a pair of electrons from donors into its empty orbital

13. The precipitate of CaF₂ ($K_5 = 1.7 \times 10^{-10}$) is formed when equal volumes of the following are mixed

a.
$$10^{-4}$$
 M Ca₂ + + 10^{-4} MF

b.
$$10^{-2}$$
 M Ca₂+ + 10^{-3} MF

c.
$$10^{-5}$$
 M Ca₂+ + 10^{-3} MF

d.
$$10^{-3}$$
 M Ca₂+ + 10^{-5} MF

Ans. B

Solution:

The equilibriu m maintained by CaF, in solution is CaF, \Leftrightarrow Ca ²⁺ + 2F

Hence
$$K = [Ca^{2+}] [F^{-}]^{2}$$

The ionic product value in the four cases are

1.
$$(10^{-4})(10^{-4}) - 10^{-12}$$

2.
$$(10^{-2})(10^{-3})^2 = 10^{-8}$$

$$3.(10^{-5})(10^{-3}) = 10^{-11}$$

$$4.(10^{-3})(10^{-5})^2 = 10^{-13}$$

The value of ionic product exceeds that of $K_{\rm s}$ only in case of combinatio n 2, and hence a precipitat e is formed

- 14. The equivalent conductance at infinite dilution of NaCl, HCl and sodium acetate at 298 K are 126.45, 426.16 and 91.0 ohm⁻¹ cm² respectively. The value of equivalent conductance of acetic acid at the same temperature is
 - a. 643.61 ohm⁻¹ cm2 eq⁻¹
 - b. 299.71 ohm⁻¹ cm2 eq⁻¹
 - c. 517.16 chm⁻¹ cm2 eq⁻¹
 - d. 390.71 ohm-1cm2 eq-1

Ans. D

Solution:

$$\begin{split} &\Lambda_{\infty} \text{ CH}_{3}\text{COOH} = \lambda_{\text{CH}_{3}\text{COO}^{-}} + \lambda_{\text{H}+} \\ &= (\lambda_{\text{CH}_{3}\text{COO}^{-}} + \lambda_{\text{Na}^{+}}) + (\lambda_{H^{+}} + \lambda_{\text{Cl}^{-}}) - (\lambda_{Na^{+}} + \lambda_{Cl^{-}}) \\ &= \Lambda_{\infty\text{CH}_{3}\text{COONa}} + \Lambda_{\infty\text{H}} - + (\lambda_{H^{+}} + \lambda_{\text{Cl}^{-}}) - (\lambda_{Na^{+}} + \lambda_{Cl^{-}}) \\ &= 91 + 426.16 - 126.45 = 390.71 \text{ ohm}^{-1} \text{ cm}^{2} \text{ eq}^{-1} \end{split}$$

Note: In SI system a factor 10-4 would have been there. Thus

=
$$\Lambda_{\text{\tiny mCH_3COOH}} = 91 \times 10^{-4} + 426.16 \times 10^{-4} - 126.45 \times 10^{-4}$$

= 390.71×10^{-4} Sm² eq⁻¹

- 15. In the salt bridge KCl is used because
 - a. KCl is an electrolyte
 - b. K⁺ and Cl- ions are isoelectronic
 - c. K⁺ and Cl- ions have same mobility
 - d. agar forms good jelly with KCl

Ans. C

Solution:

If two solutions are directly linked while forming a cell, due to diffusion of ions with unequal speed a junction potential develops which adds up to the measured EMF of the cell. Since a salt bridge contains KCl whose ions have same speed, junction potential does not develop

- 16. Platinum is used as a catalyst in general for
 - a. dehydrogenation reactions
 - b. oxidation reactions
 - c. dehydration reactions
 - d. dehydrohalogenation reactions

Ans. B

- 17. The specific conductance of an electrolyte
 - a. increases with increase in temperature
 - b. decreases on dilution
 - c. depends on the nature of the electrolyte
 - d. all the above statements are correct

Ans. D

Solution:

When temperature increases mobility increases. Hence option 1 is correct. On dilution the number of ions per unit volume decreases and hence option 2 is also correct. NaCl is a stronger electrolyte than NH4OH Hence in equimolar solution; NaCl provides more number of ions and hence shows more conductance. Hence option 3 also is true. Thus the correct choice is option 4

- 18. The pH of a solution whose $[H^+]$ is 3.0×10^{-4} M is
 - a. 4.45
 - b. 3.75
 - c. 4.36
 - d. 3.523
 - Ans. D
- 19. The hydrogen ion concentration of 0.2 M CH3COOH which is 40% dissociated is
 - a. 0.08 M
 - b. 0.12 M
 - c. 0.8 M
 - d. 0.4 M

Ans. A

Solution:

$$[H^+] = \alpha C = \frac{40}{100} \times 0.2 = 0.08 \text{ mol dm}^{-3}$$

- 20. Buffer solution can be obtained by mixing aqueous solutions of
 - a. CH₃COONa and excess HCl
 - b. NaCl and HCl
 - c. CH₃COONa and CH₃COOH
 - d. CH₃COOH and excess of NaOH

Ans. C