

Amasa Educational Services

Chemistry MCQ

2015

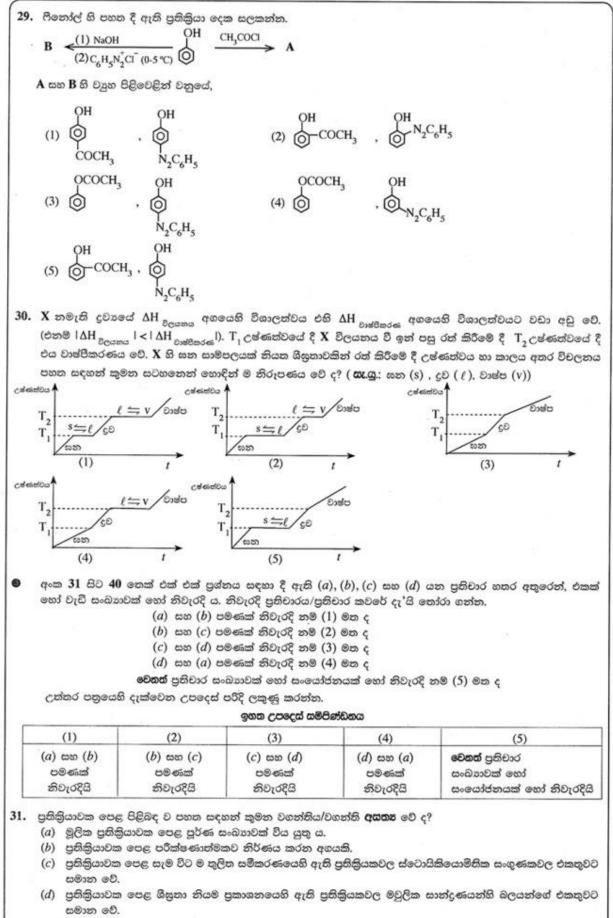
What After A/L s?

Apply for Indian Government University Scholarships Contact – 0777 – 840028 / studyabroad@amasa.lk

லேலை சலல வரல்களைக்கும் இல்லை வால் இதனைக்கும் இதன்றை இருப்புக்கு இருந்து இல்ல வரல்களைக்கும் இல்லை வரல்களைக்கும் இல்லைப் பரினார், நிலைக்களம் இலங்கைப் பரின்று இதன்று இல்லைப் பரினார், இலைக்களம் இலங்களம் பரினார், பரியாமான 16 Examinations, Sri Lanka Department இலங்கைக்கும் இயல் வரல்களைக்கள் இலங்களம் பரினார், இல்லைப் பரினார், நிலைக்களம் இலங்கைப் பரிம்சைத் மூல் வரல்களில் இலைக்களம் இலங்கைப் பரினார், இலங்களப் பரினார், நிலைக்களம் இலங்கைப் இறைக்கும் இல்ல வரல்களில் இலைக்களம் இலங்கைப் பரினார், நிலைக்கள இலங்கைப் பரினார், நிலைக்களம் இலங்கைப் இறைக்கும் இல்ல வரல்களில் இலைக்களம் இலங்கைப் பரினார், நிலைக்கள இலங்கைப் பரினார், நிலைக்களம் இலங்கைப் இறைகளைக்கும் பரியசை, நிலைக்களை இலங்கைப் பரினார், நிலைக்களம் இலங்கைப் பரினார், நிலைக்கள இலங்கைப் பரினார், நிலைக்களம் இலங்கைப் இறைக்கும் இலைக்கள இலங்கைப் பரினார், நிலைக்களம் இலங்கைப் குறைக்கள் இலங்கைப் பரினார், நிலைக்களம் இலங்கைப் பரினார், நிலைக்கள கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரிட்சை, 2015 இகஸ்ற் General Certificate of Education (Adv. Level) Examination, August 2015						
* උත්තර පතුයේ ! * 1 සිට 50 තෙක් :	ය පිටු 08 කින් යුක් ලට පිළිතුරු සපයා තියමිත ස්ථානයේ ට්ටුපස දී ඇති අෙ ටක් එක් පුශ්නයට (න්න. හ ලැබේ . මබේ විභාග අංකය ලියන්න නක් උපදෙස් සැලකිලිමත් ((1), (2), (3), (4), (5) යන පිළි				
р. — — — — — — — — — — — — — — — — — — —	සාර්චතු වායු ඇවගාඩ්රෝ ද ප්ලෑන්ක්ගේ නි	නියනය $R = 8.314 \text{ J K}^-$ තියනය $N_A = 6.022 \times 10$ තියනය $h = 6.626 \times 10$ ඉංචනය $c = 3 \times 10^8 \text{ m s}$	¹ mol ⁻¹ ²³ mol ⁻¹ ⁻³⁴ J s			
. B, O, S, S ²⁻ සහ Cl පරමා	ණු/අයනවල අරය	න් වැඩි වන පිළිවෙළ වනු	ය්,			
 B < O < CI < S O < B < CI < S O < B < CI < S B < O < S < S² X ಱಂಡವೊಂಡ IUPAC ಪ್ (1) 2-hydroxy-2-meth 2-hydroxy-2-meth 2-hydroxy-5-keto- (4) 5-carboxy-5-hydr 	< S ²⁻ < S ²⁻ < Cl) zp@zd c? nyl-5-0x0-3-he: nyl-5-0x0-3-he: -2-methyl-3-he: 0xy-3-hexyn-2-	 (2) S < S²⁻ < O < (4) O < B < S < xynoicacid xynoic acid CH 	B < CI S2- < CI I3-C-C=C-C-CH3 I2-C-C=C-CH3 CO2H .			
 B < O < Cl < S O < B < Cl < S O < B < Cl < S B < O < S < S² X සංයෝගයේ IUPAC නජ (1) 2-hydroxy-2-meth 2-hydroxy-2-meth 2-hydroxy-5-keto- (4) 5-carboxy-5-hydr 2-carboxy-5-oxo- පරමාණුවල ඉණ සම්බන්ධ (1) අයඩින් පරමාණුවේ පළමු C) පරමාණුවක අයනීකය (4) Li පරමාණුවක සංයුහ	< S ²⁻ < S ²⁻ < Cl) තුමක් ද? nyl-5-oxo-3-he: -2-methyl-3-he: oxy-3-hexyn-2-ol යෙන් පහත සඳහා හසංයුජ අරදා, එරි ඉලෙක්ටෝන බන්දු ණ ශක්තිය නිර්ණ ණා ඉලෙක්ටෝන බන්දු	 (2) S < S²⁻ < O (4) O < B < S xynoicacid xynoic acid cH cynoic acid cH ch	B < CI S ²⁻ < CI U ₃ CC=CCCH ₃ CO ₂ H X මේ ද? තුඩා ය. ෑගයට වඩා වැඩි ය. හෂ්ටික ආරෝපණය සහ අරය මගින් පමණි රාපණය 3ට වඩා අඩු ය.			
 B < O < Cl < S O < B < Cl < S O < B < Cl < S B < O < S < S² X සංයෝගයේ IUPAC නජ (1) 2-hydroxy-2-meth 2-hydroxy-2-meth 2-hydroxy-5-keto 3 2-hydroxy-5-keto 5 2-carboxy-5-hydr 2-carboxy-5-oxo- පරමාණුවල ඉණ සම්බන්ධ (1) අයඩින් පරමාණුවේ පළමු C) O පරමාණුවේ පළමු පරමාණුවක අයනීකය (4) Li පරමාණුවක සංයුද (5) පෝලිං පරිමාණයේ (0) 	< S ²⁻ < S ²⁻ < Cl) තුමක් ද? nyl-5-oxo-3-he: nyl-5-oxo-3-he: -2-methyl-3-he: 0xy-3-hexyn-2-ol යෙන් පහත සඳහා හසංයුජ අරශ, එරි ඉලෙක්ටෝන බන්දු ගිණ ශක්තිය නිර්ණ ගොසංයුජ අරශ, එරි ඉලෙක්ටෝන බන්දු ගිණ ශක්තිය නිර්ණ ගොසංයුජ අරශ, එරි ඉලෙක්ටෝන බන්දු හිණ ශක්තිය නිර්ණ	 (2) S < S²⁻ < O (4) O < B < S (4) O < B < S (4) O < B < S (4) O < CH (4) O < CH (5) C (5) C (6) C (7) C <!--</td--><td>B < CI S²⁻ < CI H₃—C—C=C—C—CH₃ CO₂H X මේ ද? කුඩා ය. අගයට වඩා වැඩි ය. හෂ්ටික ආරෝපණය සහ අරය මගින් පමණි රාපණය 3ට වඩා අඩු ය. නෝකාවට සමාන වේ. ?</td>	B < CI S ²⁻ < CI H ₃ —C—C=C—C—CH ₃ CO ₂ H X මේ ද? කුඩා ය. අගයට වඩා වැඩි ය. හෂ්ටික ආරෝපණය සහ අරය මගින් පමණි රාපණය 3ට වඩා අඩු ය. නෝකාවට සමාන වේ. ?			
 (1) B < O < Cl < S (3) O < B < Cl < S (3) O < B < Cl < S (5) B < O < S < S² (5) B < O < S < S² (1) 2-hydroxy-2-meth (2) 2-hydroxy-2-meth (3) 2-hydroxy-5-keto (4) 5-carboxy-5-hydr (5) 2-carboxy-5-hydr (5) 2-carboxy-5-oxo- coloregiele qee allowing (1) qualixi coloregiele cegi (3) coloregiele cegi (3) coloregiele cegi (3) coloregiele acutor quantum coloregiele (4) Li coloregiele acutor quantum celloregiele coloregiele celloregiele (5) colic coloregiele acutor quantum celloregiele (6) colic coloregiele (7) coloregiele acutor quantum celloregiele (8) coloregiele (9) coloregiele (1) CBr₄ (2) mailerational dual dual acutor quantum celloregiele (2) coloregiele (3) coloregiele (4) Li coloregiele (5) colic coloregiele (6) colic coloregiele (7) coloregiele (8) coloregiele (9) coloregiele (1) CBr₄ (2) coloregiele (2) coloregiele (3) coloregiele (4) coloregiele (5) colic coloregiele (5) colic coloregiele (6) colic coloregiele (7) coloregiele (8) coloregiele (8) coloregiele (9) coloregiele (1) coloregiele (2) coloregiele (3) coloregiele (4) coloregiele (5) colic coloregiele (6) coloregiele (7) coloregiele (8) coloregiele (8) coloregiele (8) coloregiele (7) coloregiele (8) coloregiele (7) coloregiele (8) coloregiele (8) coloregiele (7) coloregiele (8) coloregiele (7) coloregiele (7) coloregiele (8) coloregiele (8) coloregiele (8) coloregiele (7) coloregiele (7) coloregiele (7) coloregiele 	< S ²⁻ < S ²⁻ < Cl) කුමක් ද? nyl-5-oxo-3-he: nyl-5-oxo-3-he: -2-methyl-3-he: 0xy-3-hexyn-2-ol යෙන් පහත සඳහා හසංයුජ අරදා, එරි ඉලෙක්ටෝන බන් ගණ ශක්තිය නිර්ණ ගතා ඉලෙක්ටෝන බන් ගණ ශක්තිය නිර්ණ ගතා ඉලෙක්ටෝන බන් ගණ ශක්තිය නිර්ණ වී පරමාණුවේ විදයු ගීන් අඩුම වාෂ්පශී() CHBr ₃ t MgCO ₃ සහ CaC හ ටි සැදුණු CO ₂ ගේ ස්කන්ධය වන	(2) S < S ²⁻ < O	B < CI S ²⁻ < CI H ₃ —C—C=C—C—CH ₃ CO ₂ H X මේ ද? කුඩා ය. අගයට වඩා වැඩි ය. හෂ්ටික ආරෝපණය සහ අරය මගින් පමණි රාපණය 3ට වඩා අඩු ය. නෝකාවට සමාන වේ. ?			
 B < O < Cl < S O < B < Cl < S O < B < Cl < S O < B < Cl < S B < O < S < S² X සංයෝගයේ IUPAC නජ (1) 2-hydroxy-2-meth 2-hydroxy-2-meth 2-hydroxy-5-keto 2-arboxy-5-hydr 2-carboxy-5-hydr 2-carboxy-5-oxo- පරමාණුවල ශුණ සම්බන්ධ (1) අයඩින් පරමාණුවේ පළමු C) O පරමාණුවක අයනීකය (2) O පරමාණුවක සංයුහ පරමාණුවක අයනීකය (4) Li පරමාණුවක සංයුහ (5) පෝලිං පරිමාණයේ 0 පහත දී ඇති සංයෝග අන (1) CBr₄ (2) main and com (2) CBr₄ (2) කාබනේට මිශුණයක අඩංශු දන්නා ස්කන්ධයක් රත් කල කරන ලද කාබනේට මිශුණ පීඩනයේ දී වාසු මවුල එක (1) 52 g 	< S ²⁻ < S ²⁻ < Cl) කුමක් ද? nyl-5-oxo-3-he: -2-methyl-3-he: oxy-3-hexyn-2-ol යෙන් පහත සඳහා හසංයුජ අරදා, එරි ඉලෙක්ටෝන බන්දු ණ ශක්තිය නිර්ණ හිණ ශක්තිය නිර්ණ රණ ශක්තිය නිර්ණ රෝතා ඉලෙක්ටෝන බන්දු රෝත අඩුම වාෂ්පයි() CHBr ₃ 1 MgCO ₃ සහ CaC 2 විට සෑදුණු CO ₂ රෝ ස්කන්ධය වන ක් ගන්නා පරිමාව) 520 g	(2) $S < S^{2-} < O <$ (4) $O < B < S <$ (4) $O < B < S <$ (4) $O < B < S <$ xynoic acid xynoic acid xynoic acid -one ad ages Dostada Quant ad ages Dostada Quant gave Destada Quant gave Destada Quant ad ages Dostada Quant gave Destada Quant ad ages Destada Quant ad ages Destada Quant gave Desetada	B < CI			

[අදවැනි පිටුව බලන්න.

	දක්වයි	ç?				යාවේ දාම පුචාරණ පියවරක් නිවැරදි 8	
	(1)	ci-ci <u>hv</u>	→ Ċl + Ċl	(2) Č	1 či > ci-(CI ·	
	(3) $\dot{CH}_{3}\dot{CI}-\dot{CI} \longrightarrow CH_{3}CI + \dot{CI}$ (4) $\dot{H}-\dot{CH}_{3}\dot{CI} \longrightarrow CH_{3}CI + \dot{H}$						
			> CH ₃ Cl ·				
9.					ත වගන්තිය අසත ෂ වේ	ç?	
			යෝග උත්පේරක ්හය සහස HCl		n වේ. කර H ₂ වායුව සාදයි.		
					ධර M2 වාසුව සාදය. ව සෑදෙන දුාවණය භාෂ්	මික වේ.	
	(4)	ඝන ඇලුමිනියම්) ක්ලෝරයිඩ් හි	ඇලුමිනියම් පර	මාණු වටා හැඩය චතුස්	තලීය වේ.	
					යවයක් වශයෙන් පවතී.		
10.	පහත		කුමන පේළිය S		ා S පරමාණුව පිළිබඳ 🕯	බ්වැරදි නොරතුරු ලබා දෙයි ද?	
		ඔක්සිකරණ අවස්ථාව	ආරෝපණය	මුහුම්කරණය	හැඩය	S–SF ₂ වල S–S <i>σ</i> – බන්ධනයේ ස්වභාවය	
	(1)	+1	0	sp ³	චතුස්තලීය	S (3p පර.කා.) + S (sp ³ මු.කා.)	
	(2)	+2	0	sp ²	තලීය නිකෝණාකාර		
	(3)	+2	0	sp ³	පිරම්ඩීය	S (3p පර.කා.) + S (sp ³ මු.කා.)	
	(4)	+1	+1	sp ³	පිරම්ඩීය	S (3p පර.කා.) + S (sp ³ මු.කා.)	
	(5)	+2	+1	sp ²		S (3p පර.කා.) + S (sp ² මු.කා.)	
			(පර.ස	හ. = පරමාණුක	කාක්ෂික, මු.කා.= මුහුම්	් කාක්ෂික)	
	සමතු(K සඳ	ලිතතා මිශුණයෙ හා නිවැරදි පුකා	හි C හි මවුල c ද ාශනය වනුයේ,)මාණයක් අඩංගු	ු වේ. T උෂ්ණත්වයේ දී	; T නියත උෂ්ණත්වයකට රත් කළ වි මෙම පුතිකියාවෙහි සමතුලිතතා නියත = $\frac{8c^3}{(a-2c)^2}$ (5) $K_c = \frac{c^3}{(a-2c)^2}$	
12		(4-20)	((4 4)	වගන්තිය අසත ෂ වේ ද?	
14.						වේ. (3) $\left[\operatorname{NiCl}_4\right]^2$ ිකහපාට ෙ	
					CrCl ₄] නිල්-දම පාට		
13.	දුව දෙ දහනය (CO, 0	තේටේන් (C ₇ H ₁₀ 3 කළ විට CO 6 CO ₂ සහ O ₂) මුජ	₅) නියැදියකින් 10 සහ CO ₂ වායු මි එ මවුල පුමාණය).0 g ක් O ₂ වායු ශුණයක් සෑදුණි. 1.1 විය. (සෑදුණු	මවුල 1.30 ක් සමග මි පුතිකියාවෙන් පසු කාශ 3 ජලය පවතින්නේ දුවං	මු කරන ලදී. හෙප්වෙන් සම්පූර්ණයෙ මර උෂ්ණත්වයේ පවතින වායු මිශුණ ොක් වශයෙන් සහ එහි වායුවල දාවාත මාණය (H = 1, C = 12, O = 16)	
		0.40 වේ.	(2) 0.45 වේ			52 වේ. (5) 0.54 වේ.	
14.	27 °C දී සංශුද්ධ A දුවය, එහි වාෂ්පය සමග සමතුලිතව පවතින සංවෘත පද්ධතියක් සලකන්න. එම උෂ්ණත්වයේ දී දුවයේ වාෂ්පීකරණයේ එන්තැල්පිය 20.00 kJ mol ⁻¹ වේ. 27 °C දී A හි වාෂ්පීකරණයේ එන්ටොපිය J K ⁻¹ mol ⁻¹ වලිප						
14.		9 <u>2</u>	් එන්තැල්පිය 20	0.00 KJ moi "@2		කරණයේ එන්ටුොපිය J K ⁻ ' mol ⁻ ' වලි	
14.	දුවයේ වනුගේ (1)	కే,	් එන්තැල්පිය 2((2) 0.07	(3) 5			
	වනුයෙ (1) KClO දී හා 27 °C	්, 0.01 ₃ තාප වියෝජන 1.13×10 ⁵ Pa පීඩ දී ජලයේ සන්ත	(2) 0.07 යෙන් ලැබෙන (බනයේ දී සිදු කළ	(3) 5) ₂ වායුව ජලයේ ; එවැනි පරීක්ෂං	.66 (4) 14 යටිකුරු විස්ථාපනයෙන් ණයක දී එකතු කර ගන්		
	වනුගෙ (1) KClO දී හා 27 °C වනුගෙ	්, 0.01 3 තාප වියෝජන 1.13 × 10 ⁵ Pa පි∂	(2) 0.07 යෙන් ලැබෙන (ධනයේ දී සිදු කළ	(3) 5 ට ₂ වායුව ජලයේ ; එවැනි පරීක්ෂං නය 0.03×10 ⁵ P	.66 (4) 14 යටිකුරු විස්ථාපනයෙන් ණයක දී එකතු කර ගන් a ලෙස දී ඇත්නම්, එක	1.30 (5) 66.67 ් එකතු කරනු ලැබේ. 27 °C උෂ්ණත්ව ෙනා ලද O ₂ වායු පරිමාව 150.00 cm ³ වි තු කර ගන්නා ලද O ₂ වායුවේ ස්කන්ධ	
15.	වනුගේ (1) KClO දී හා 27 °C වනුගේ (1)	ය්, 0.01 ₃ තාප වියෝජන 1.13×10 ⁵ Pa පීඩ දී ජලයේ සන්ත ද්, (O = 16) 0.212 g	(2) 0.07 ගයෙන් ලැබෙන (බනයේ දී සිදු කළ ගප්ත වාෂ්ප පීඩා (2) 0.217 g	(3) 5) ₂ වායුව ජලයේ ; එවැනි පරීක්ෂ- නය 0.03×10 ⁵ P (3) 1	.66 (4) 14 යටිකුරු විස්ථාපනයෙන් ණයක දී එකතු කර ගන් ක ලෙස දී ඇත්නම්, එක 98 g (4) 21	.30 (5) 66.67 ් එකතු කරනු ලැබේ. 27 °C උෂ්ණත්ව ෙනා ලද O ₂ වායු පරිමාව 150.00 cm ³ වි තු කර ගන්නා ලද O ₂ වායුවේ ස්කන්ධ	
15.	වනුගේ (1) KClO දී හා 27 °C වනුගේ (1) HA දු	්, 0.01 3 තාප වියෝජන 1.13 × 10 ⁵ Pa පීඩ දී ජලයේ සන්ත ්, (O = 16) 0.212 g බල අමලයක් ස	(2) 0.07 යෙන් ලැබෙන (ධනයේ දී සිදු කළ හාප්ත වාෂ්ප පීඩා (2) 0.217 g හා එහි NaA සෙ	(3) 5 ව ₂ වායුව ජලයේ ; එවැනි පරීක්ෂං නය 0.03×10 ⁵ P (3) 1 හ්ඩියම ලවණය	.66 (4) 14 යටිකුරු විස්ථාපනයෙන් ණයක දී එකතු කර ගන් ක ලෙස දී ඇත්නම්, එක 98 g (4) 21	4.30 (5) 66.67 ් එකතු කරනු ලැබේ. 27 °C උෂ්ණත්ව ෙනා ලද O ₂ වායු පරිමාව 150.00 cm ³ වි තු කර ගන්නා ලද O ₂ වායුවේ ස්කන්ධ 2 g (5) 217 g අගය a වේ. HA ට NaA සාන්දුණ අත	


I7.
$$C_{e}H_{3}^{-} - C = C - C_{e}H_{3}$$
 $\frac{H_{8}S_{0}}{m_{cm}}$
 A
 $\frac{H_{8}S_{0}}{H_{3}}$
 B

 apame accuration field concerned between the set of the

[හතරවැනි පිටුව බලන්න.

25. CH₂COCH₂CO₂H
$$\stackrel{(1)}{(2)} H_{Q}H_{Q} \longrightarrow S \xrightarrow{PC} T \xrightarrow{2nHg} T \xrightarrow{2nHg} U$$

some equad galadies anglike besik S, T aso U & Dyas Bigeroles Dyasd,
OH
(1) CH₃-CH-CH₂CH₂OH, CH₂COCH₂CHO, CH₂CH₂CH₂CH₃
(2) CH₃-CH-CH₂CQ₂H, CH₃COCH₂CHO, CH₂CH₂CH₄
(3) CH₃COCH₂CH₂OH, CH₃COCH₂CHO, CH₂CH₂CH₄
(4) CH₃COCH₂CH₂OH, CH₃COCH₂CHO, CH₂CH₂CH₄
(5) CH₃CH-CH₂CH₂OH, CH₃COCH₂CHO, CH₂CH₂CH₄
(6) CH₃COCH₂CH₂OH, CH₃COCH₂CHO, CH₂COCH₄CH₃
(7) CH² Br₂ Br₁
(8) CH² CH² CH² CH₂CH₂OH, CH₃COCH₄CHO, CH₃CHCH₄CH₃
(9) CH² CH²

(4) කෝෂය කි්යාකරන විට Cd²⁺ (aq) සාන්දුණය අඩු වේ.
 (5) කෝෂය කි්යාකරන විට Zn²⁺ (aq) සාන්දුණය වැඩි වේ.

32.	▲ b c d C = C - CH, අණුව පිළිබඳ ව පහත සඳහන් කුමන වගන්තිය/වගන්ති සතෘ වේ ද?
	 (a) a, b, c සහ d ලෙස නම් කර ඇති කාබන් පරමාණු සරල රේඛාවක නොපිහිටයි. (b) a, b සහ d ලෙස නම් කර ඇති කාබන් පරමාණු පිළිවෙළින් sp², sp සහ sp³ ලෙස මුහුම්කරණය වී ඇත. (c) බෙන්සින් වළල්ලේ සියලු ම කාබන්, කාබන් බන්ධන දිග එකිනෙකට සමාන වන අතර, C≡C බන්ධන දිගට වඩා දිග ය. (d) බෙන්සීන් වළල්ලේ සියලු ම කාබන්, කාබන් බන්ධන දිග එකිනෙකට සමාන වන අතර, C≡C බන්ධන දිගට වඩා ලකටී ය.
33.	පටල කෝෂයක් යොදා NaOH නිෂ්පාදනය සම්බන්ධයෙන් පහත සඳහන් කුමන වගන්තිය/වගන්ති ගහන වේ ද? (a) විදයුත් විච්ඡේදනයේ දී Na ⁺ (aq) අයන, පටලය හරහා කැතෝඩ කුටීරයේ සිට ඇනෝඩ කුටීරයට ගමන් කරයි. (b) භාවිත කරන ඇනෝඩය සහ කැතෝඩය පිළිවෙළින් ටයිටේනියම් සහ නිකල් වේ. (c) සංශුද්ධතාවයෙන් ඉහළ NaOH මෙම කුමයෙන් සාදා ගත හැක. (d) H ₂ (g) සහ Cl ₂ (g) අතුරුඵල ලෙස පිළිවෙළින් ඇනෝඩය සහ කැතෝඩය මත සෑදේ.
34.	පුතිකියාවක සකියන ශක්තිය පිළිබඳ ව පහත සඳහන් කුමන වගන්තිය/වගන්ති අසතන වේ ද? (a) තාපදායක කියාවලියක් සඳහා පසු පුතිකියාවේ සකියන ශක්තියට වඩා ඉදිරි පුතිකියාවේ සකියන ශක්තිය අඩු ය. (b) වේගයෙන් සිදු වන පුතිකියාවක සකියන ශක්තියට වඩා සෙමෙන් සිදු වන පුතිකියාවක සකියන ශක්තිය අඩු ය. (c) දෙන ලද පුතිකියා මාර්ගයක සකියන ශක්තිය මත උත්පේුරකයක බලපෑමක් නැත. (d) පුතිකියකවල ආරම්භක සාන්දුණ ඉහළ වූ විට සකියන ශක්තිය අඩු වේ.
35.	තිමාන සමාවයවිකතාව සම්බන්ධ ව පහත සඳහන් කුමන වගන්තිය/වගන්ති සත හ වේ ද? (a) එකිනෙකට දර්පණ පුතිබීම්බ වන තිමාන සමාවයවික යුගලයක් පුතිරූපඅවයව සමාවයවික ලෙස හඳුන්වයි. (b) එකිනෙකට දර්පණ පුතිබීම්බ වන තිමාන සමාවයවික යුගලයක් පාරතිමාන සමාවයවික ලෙස හඳුන්වයි. (c) එකිනෙකට දර්පණ පුතිබීම්බ නො වන තිමාන සමාවයවික යුගලයක් පුතිරූපඅවයව සමාවයවික ලෙස හඳුන්වයි. (d) එකිනෙකට දර්පණ පුතිබීම්බ නො වන තිමාන සමාවයවික යුගලයක් පාරතිමාන සමාවයවික ලෙස හඳුන්වයි.
36.	ක්වොන්ටම් අංක n = 3 සහ m _l = -2 වන ඉලෙක්ටුෝනයක් සඳහා පහත සඳහන් කුමන වගන්තිය/වගන්ති සභා ෂ වේ ද? (a) ඉලෙක්ටුෝනය ඇත්තේ තුන්වන පුධාන ශක්ති මට්ටමේ ය. (b) ඉලෙක්ටුෝනය d කාක්ෂිකයක ඇත. (c) ඉලෙක්ටුෝනය p කාක්ෂිකයක ඇත. (d) ඉලෙක්ටුෝනයේ හුමණ ක්වොන්ටම අංකය m _s = +1/2 විය යුතු ය.
37.	පහළ උෂ්ණත්වවලට වඩා ඉහළ උෂ්ණත්වවල දී බොහෝ පුතිකියා වඩා වේගවත් ව සිදු වේ. මෙම නිරීක්ෂණය පැහැදිලි කිරීම සඳහා පහත සඳහන් කුමන වගන්තිය/වගන්ති නිවැරදි හේතුව/හේතු දක්වයි ද? (a) උෂ්ණත්වය වැඩි වන විට පුතිකියාවේ සකියන ශක්තිය ද වැඩි වේ. (b) උෂ්ණත්වය වැඩි වන විට පුතිකියාවේ සකියන ශක්තිය අඩු වේ. (c) උෂ්ණත්වය වැඩි වන විට ඒකක කාලයක දී ඒකක පරිමාවක් තුළ සිදු වන සංඝට්ටන සංඛාාව වැඩි වේ. (d) ඉහළ ශක්තියක් සහිත සංඝට්ටන පුතිශතය වැඩි වීම උෂ්ණත්වය වැඩි වීමේ පුතිඵලයක් වේ.
38.	සමතුලිත පුතිකියාවක සමතුලිතතා නියනය, K පිළිබඳ ව පහත සඳහන් කුමන වගන්තිය/වගන්ති අසත වේ ද? (a) පීඩනය වෙනස් වන විට එය වෙනස් නො වේ. (b) එක් ඵලයක සාන්දුණය වැඩි කළ විට එය වැඩි වේ. (c) උෂ්ණත්වය වෙනස් වන විට එය වෙනස් විය හැක. (d) එක් පුතිකිුයකයක සාන්දුණය වැඩි කළ විට එය වැඩි වේ.
39.	පහත දී ඇති කුමන සංයෝගය/සංයෝග, පහත දී ඇති පුතිකියා දෙකටම භාජනය වේ ද? I. ජලීය NaOH සමග ස්වයං සංඝනනය. II. ඇමෝනීය AgNO ₃ සමග ඔක්සිකරණය. CHO O CH ₃ CH ₃
	(a) \bigcirc -COCH ₂ C=C-H (b) \bigcirc (c) \bigcirc -C=C-C-C-CH ₃ (d) C ₂ H ₅ -C-CHO CH ₂ OH (c) \bigcirc -C=C-CH ₃ (d) C ₂ H ₅ -C-CHO
40.	බහුඅවයවක පිළිබඳ ව පහත සඳහන් කුමන වගන්තිය/වගන්ති සභා ෂ වේ ද? (a) PVC තාප සුව්කාර්ය බහුඅවයවකයක් වන අතර, ක්ලෝරීන් ඇති බැවින් ලෙහෙසියෙන් ගිනි නොගනී. (b) ෆීනොල් සහ ෆෝමැල්ඩිහයිඩ, සාන්දු H ₂ SO ₄ හමුවේ පුතිකියා කර බේක්ලයිට් සාදයි. (c) යූරියා සහ ෆෝමැල්ඩිහයිඩ, සාන්දු H ₂ SO ₄ හමුවේ පුතිකියා කර තාප සුව්කාර්ය බහුඅවයවකයක් සාදයි. (d) ටෙෆ්ලෝන් තාප ස්ථාපන බහුඅවයවකයකි.

		වගුවෙහි දැක්වෙන පිරිද් () විත ලෙස ලකුණු කරන්න.		සහ (5) යන පුතිචාරවලින් කවර පුතිචාරය දැ'යි තෝර
	පු තිවාරය	පළමුවැනි උකාශය		දෙවැනි පුකාශය
	(1) (2) (3) (4) (5)	සනා වේ. සනා වේ. සනා වේ. අසනා වේ. අසනා වේ.		ාර, පළමුවැනි පුකාශය නිවැරදි ව පහදා දෙයි. මුන් පළමුවැනි පුකාශය නිවැරදි ව පහදා නොදෙයි .
		පළමුවැනි		දෙවැනි පුකාශය
41.			ක් ලෙස කිුයා	NCl ₃ ජලය සමග පුතිනියා කර NH ₃ සහ HOCl ලබ දෙයි.
42.	එතිල් ක්ලෝරයිඩ්වලට වඩා පහසුවෙන් වයිනයිල් ක්ලෝරයිඩ් නියුක්ලියොෆිලික ආදේශ පුනිකිුයාවලට භාජනය වේ.			සම්පුයුක්තතාවය නිසා වයිනයිල් ක්ලෝරයිඩ්හි කාබන් සහ ක්ලෝරීන් අතර බන්ධනය ද්විත්ව බන්ධන ලක්ෂණ පෙන්නුම් කරන නමුත් මෙම ගුණය එනිල් ක්ලෝරයිඩ්හි නැත.
43.	සංවෘත පද්ධතියක් තුළ ඇති ජල වාෂ්ප ඝනීභවනය වන විට අවට පරිසරයෙහි එන්ටොපිය පහළ යයි.			පද්ධතියකින් පිට කරන තාපය මගින් අවට පරිසරයෙහි ඇති අංශුවල චලනය වැඩි කරයි.
44.	සල්ෆර් සහ NaOH අතර පුතිකියාව ද්විධාකරණ පුතිකියාවකට උදාහරණයකි.			මූලදුවායක් එකවර ම ඔක්සිකරණය සහ ඔක්සිහරණය වන විට එය ද්විධාකරණය ලෙස හැඳින්වේ.
45.	ලූකස් පරීක්ෂාවේ දී ද්විතියික මධාසාරවලට වඩා වෙගයෙන් නෘතීයික මධාසාර පුතිකියා කරයි.			ද්විතීයික කාබො කැටායනවලට වඩා තෘතීයික කාබො කැටායන ස්ථායිතාවයෙන් අඩු ය.
46.	දී ඇති උෂ්ණත්වයක දී සංවෘත බඳුනක සමතුලිතතාවයේ ඇති N ₂ O ₄ හා NO ₂ මිශුණයක් සිසිල් කළ විට, NO ₂ වල සාන්දුණය වැඩි වේ.			N ₂ O ₄ ,NO ₂ වලව විඝටනය වීම තාපදායක පුතිකි්යාවකි.
47.				KHCO3 හා NaHCO3 හි ජලයේ දාවාතාව බොහෙ දුරට එක සමාන වේ.
48.	ෆීනෝල් ඇරෝමැටික සංයෝගයක් වුව ද එතනෝල් එසේ නො වේ.			එතනෝල්වලට සාපේක්ෂව එතොක්සයිඩ් අයනයෙ ස්ථායිතාවයට වඩා ෆීනෝල්වලට සාපේක්ෂව ෆීනෝ අයනයේ ස්ථායිතාවය වැඩි ය.
49.	ජලයට වඩා ජලීය ආමලික මාධායක දී BaF ₂ (s)වලට ඉහළ දුාවයතාවක් ඇත.			අමලයක BaF ₂ (s) දිය කළ විට HF සැදෙන නිස K _{sp} නියතව තබා ගැනීම පිණිස Ba ²⁺ (aq) සාන්දුණය වැඩි වේ.
50.	හරිනාගාර වායු සූර්යයාගෙන් පිටවන අධෝරක්ත කිරණ පෘථිවිය මතුපිටට පැමිණීම වළක්වයි.		අධෝරක්ත කිරණ අවශෝෂණය කිරීමේ හැකියා හරිතාගාර වායුවක වැදගත් ලක්ෂණයක් වේ.	

* * *