

Class: 12

Subject: chemistry Topic: P Block

No. of Questions: 20 Duration: 60 Min Maximum Marks: 60

1. Among these ores the highest phosphorus content is in

- A. chlorapatite
- B. phosphorite
- C. fluorspar
- D. equal

Sol: B

 $2.p\pi$ - $p\pi$  multiple bonding is present in

- A. oxides of nitrogen
- B. oxides of phosphorus
- C. halides of nitrogen
- D. halides of phosphorus

Sol: A

There are only valence p-orbitals in N and O. Thus there is  $p\pi$ - $p\pi$  bonding in oxides of nitrogen.

3. The electronegativities of N, C, Si and P are such that

```
A. P < Si < C < N
```

B. Si < P < N < C

C. Si < P < C < N

D. P < Si< N < C

Sol: C

Si P

Electronegativity increases along a period left to right. Thus,

C<N

Si < P

Electronegativity decreases down the group.

Then C>Si

N>P

Thus, Si < P < C < N



- 4. What is the role of phosphate ion in a detergent?
- A. It reduces pH of the water
- B. It increase pH of the water
- C. It removes  $Ca^2$ +and  $Mg^2$ + ions from water that causes hardness
- D. It increases its solubility in water

Sol: D

- 5. Nitrosonium ion (NO+) is isoelectronic with
- A. carbon dioxide
- B. carbon monoxide
- C. nitrogen dioxide
- D. nitric oxide

Ans. B

Solution:

| (a) CU <sub>2</sub> | 22 |
|---------------------|----|
| (b) CO              | 14 |
| (c) NO <sub>2</sub> | 23 |
| (d) NO              | 15 |

- 6. Of the following compounds the most acidic is
- A.  $As_2O_3$
- B.  $P_2O_5$
- C.  $Sb_2O_3$
- D.  $Bi_2O_3$

Ans. B

Solution: Acidic strength of oxides decreases along a group from upward to downwarD. Thus, the order of acidic strength is

 $P_2O_5 > As_2O_3 > Sb_2O_3 > Bi_2O_3$ 

- 7. The bond angle in AsH<sub>3</sub> is greater than that in
- A. NH<sub>3</sub>
- B. H<sub>2</sub>O
- C. BCl<sub>3</sub>
- D. None of these

Answer: D

- 8. Which is least basic?
- A.  $NF_3$
- B. NCl<sub>3</sub>
- C. NBr<sub>3</sub>
- D.  $NI_3$

Ans. A

Solution:

Fluorine is the most electronegative element thus tendency of N-atom to donate lone pair (to behave as Lewis acid) is least.



9. A colourless salt gives a white ppt (soluble in ammonium acetate) and a brown coloured pungent gas on reaction with conC.

H<sub>2</sub>SO<sub>4</sub>. Salt is

- A. Ba  $(NO_3)_2$
- B.  $Pb(NO_3)_2$
- C. NaNO<sub>3</sub>
- D. NH<sub>4</sub>NO<sub>3</sub>

Ans. B

solution:

(a) 
$$Ba(NO_3)_2 + H_2SO_4 \rightarrow BaSO_4 + 2HNO_3$$

Insoluble in CH<sub>3</sub>COONH<sub>4</sub>

(b) 
$$Pb(NO_3)_2 + H_2SO_4 \rightarrow PbSO_4 + 2HNO_3$$

Soluble in CH<sub>3</sub>COONH<sub>4</sub>

$$PbSO_4 + 2CH_3COONH_4 \rightarrow (NH_4)_2SO_4 + (CH_3COO)_2Pb$$

10. Assertion (A) Each N-atom is sp<sup>3</sup>-hybridised in N<sub>2</sub>H<sub>4</sub>.

Reason (R) It has gauche conformation.

- A. Both (A) and (R) are true and (B) is the correct explanation of (A).
- B. Both (A) and (R) are true but (B) is not the correct explanation of (A).
- C. (A) is true but (B) is false.
- D. (A) is false but (R) is true.

Solution: B

- 11. Which of the following statements are true?
- A. Cold and very dilute HNO<sub>3</sub> forms NH<sub>4</sub>NO<sub>3</sub> with Zn or Sn
- B. Concentrated HNO<sub>3</sub> forms H<sub>2</sub>SnO<sub>3</sub> with Sn
- C. Cold and more concentrated HNO<sub>3</sub> forms NO<sub>2</sub> with Cu
- D. All the above are correct

Solution: D

- 12. Which one of the following acid possesses oxidising, reducing and complex forming properties?
- A. HNO<sub>3</sub>
- B. HC1
- C. H2SO<sub>4</sub>
- D. HNO<sub>2</sub>

Solution: D

- 13. Which is/are true statements?
- A. Sulphur trioxide exists as cyclic trimer in solid state, S<sub>3</sub>O<sub>9</sub>
- B. Selenium trioxide solid is a cyclic tetramer, Se<sub>4</sub>O<sub>12</sub>
- C. TeO<sub>3</sub> is a solid with a network structure in which TeO<sub>6</sub> octahedra share all vertices
- D. All of the above are correct

Solution: D



- 14. Which of the following has peroxy linkage?
- A. H<sub>2</sub>S2O<sub>3</sub>
- B.  $H_2SO_5$
- C.  $H_2S_2O_7$
- D.  $H_2S_4O_6$
- Ans. B

Solution:

H<sub>2</sub>SO<sub>5</sub> called peroxy sulphuric acid (Caro's acid) has peroxy linkage

$$H_2SO_5 + H_2O \rightarrow H_2SO_4 + H_2O_2$$

- 15. S-S bond is present in
- A.  $\alpha$  (SO<sub>3</sub>) n
- B. Y (S309)
- C.  $H_2S_2O_3$
- D.  $H_2S_2O_8$

Solution: C

$$\begin{bmatrix} 0 & 1 \\ 0 & -S \\ 0 & -S \end{bmatrix}^2$$

- 16. Which of the following species have undistorted octahedral structures?
- 1. SF<sub>6</sub>
- 2 PF<sub>6</sub>
- 3.  $SiF_6^{2-}$
- 4. SeF<sub>6</sub>

Select the correct answer using the codes given below

- A. 2, 3 and 4
- B. 1.2 and 3
- C. 1, 3 and 4
- D. 1, 2 and 4

Solution: D

- 17. In  $So_3^{2-}$
- A.  $d\pi$ -p $\pi$  bond between S and O is delocalized
- B. Bonds between S and 0 are equivalents
- C. There is sp3 hybridised sulphur atom
- D. All of the facts given above are true
- Ans. D

Solution:

$$\begin{bmatrix} 0 \leftarrow \$ = 0 \end{bmatrix}^2$$

 $d\pi$  -  $p\pi$  bond due to d-orbital in sulphur and this is delocalised by resonance. Thus, (a) is true.



$$\begin{bmatrix} 0 = S \to 0 \\ 0 \end{bmatrix}$$

- (b) Due to resonance (S-O) bonds are equivalent. Thus, (b) is true.
- (c) S-atom is sp<sub>3</sub>-hybridiseD. Thus, (c) is also true.
- 18. The order of stability of metal oxide is
- A.  $Cr_2O_3 < MgO < Al_2O_3 < Fe_2O_3$
- B.  $Fe_2O_3 < Cr_2O_3 < Al 2O_3 < MgO$
- C. Fe2O3 < Al 2O3 < Cr2O3 < MgO
- D. Al 203 < Mg0 < Fe203 < Cr203

Ans. B

Solution:

As stability is directly related to lattice energy and lattice energy depends on charge and size of ions. So, the order is  $Fe_2O_3 < Cr = O_3 < Al_2O_3 < MgO$ .

- 19. Hypochlorite disproportionates to give
- A. Cl and ClO<sub>4</sub>
- B. ClO<sub>4</sub> and ClO<sub>3</sub>
- ClO<sub>3</sub> and Cl
- D. ClO<sub>2</sub> and Cl

Ans. C

Solution:

2HClO →2HClO<sub>3</sub> + HCl

- 20. When Cl2 is passed through cold dii. NaOH, the products are
- A. NaCl, NaOCl and H<sub>2</sub>O
- B. NaCl, NaClO<sub>2</sub> and H<sub>2</sub>O
- C. NaC1, NaClO3 and H2O
- D. NaCl, NaClO<sub>4</sub> and H<sub>2</sub>O

Ans. A

Solution:

$$Cl_2 + 2NaOH \rightarrow Nacl + NaoCl + H_2O$$

- Cl<sub>2</sub> disproport ionates to NaCl and NaOCl.
- 21. Assertion (A)  $Cl_2$  or  $Br_2$  changes KI into  $I_2$  (violet in  $CC1_4$  layer),  $Cl_2$  changes KBr into  $Br_2$  (orange-yellow in  $CC1_4$  layer).

Thus, Cl2 would change mixture of KI and KBr into violet layer in CC14.

Reason (R) Oxidising power is in order I2 < Br2 < CI2 < F2.

- A. Both (A) and (B) are true and (R) is the correct explanation of (A).
- B. Both (A) and (B) are true but (R) is not the correct explanation of (A).
- C. (A) is true but (B) is false.
- D. (A) is false but (R) is true.

Ans. A





Solution:

Cl oxidises Br to Br and Br oxidises I to I2 (violet)

22. Which one of the following halogens has the highest bond dissociation energy?

A. F<sub>2</sub>

B. Cl<sub>2</sub>

 $C.\ Br_2$ 

 $D. I_2$ 

Ans. B

Solution:

As the size increases bond length increases, thus bond dissociation energy decreases.

| Molecule        | Bond dissociation energy |  |  |  |
|-----------------|--------------------------|--|--|--|
| F <sub>2</sub>  | 158.8                    |  |  |  |
| Cl2             | 242.6                    |  |  |  |
| Br <sub>2</sub> | 192.8                    |  |  |  |
| l <sub>2</sub>  | 151.1                    |  |  |  |

However, the dissociation energy of fluorine is lesser than  $\text{Cl}_2$  because of its small size. Hence,  $\text{Cl}_2$  has the highest bond dissociation energy.

23. In the manufacture of bromine from sea water, the mother liquor containing bromide is treated with

A. carbon dioxide

B. chlorine

C. iodine

D. sulphur dioxide

Ans. B

Solution:

Cl being a stronger oxidising agent, oxidises bromide present in the mother liquor or Br2.

$$2Br^- + Cl_2 \rightarrow Br_2 + 2Cl^-$$

from mother liquor

bromine

 $2Br - + Cl \rightarrow Br + 2Cl$ 

bromine

22

from mother liquor

24. Select correct statement(s).

A. Cl<sub>2</sub>O and ClO<sub>2</sub> are used as bleaching agents and as germicides.

B.  $I_2O_5$  is used in the quantitative estimation of CO.

C. Bond angle XOX varies in the order FOF < C10C1 < BrOBr.

D. All of the above are correct statements.

Solution: D



25. Assertion (A) The reaction,

$$XeO_3 + 6H^+ + 6e^- \implies Xe + 3H_2O, E^\circ = 2.1 V$$

is not feasible thermodynamically to oxidise H<sub>2</sub>O

Reason (R) There is a high activation energy barrier between oxidation state +6 and 0 of Xe.

- A. Both (A) and (R) are true and (R) is the correct explanation of (A).
- B. Both (A) and (R) are true but (R) is not the correct explanation of (A).
- C. (A) is true but (R) is false.
- D. (A) is false but (R) is true.

Solution: C

- 26. Neon lamps are used in botanical gardens and in green houses as they
- A. provides oxygen
- B. provide better light
- C. stimulate growth of plants
- D. None of the above

Solution: C

27. Match List I wish List II and select the correct answer using the codes given below the list

|    | Ust I                    | List II |                      |  |
|----|--------------------------|---------|----------------------|--|
| Α. | XeF₄                     | 1.      | Distorted octahedral |  |
| B. | XeF <sub>6</sub>         | 2.      | Tetrahedral          |  |
| C. | XeO <sub>3</sub><br>XeO₄ | 3.      | Square planar        |  |
| D. | XeO <sub>4</sub>         | 4.      | Pyramidal            |  |

| Co  | des |   |   |   |       |   |   |   |
|-----|-----|---|---|---|-------|---|---|---|
|     | Α   | В | C | D | Α     | В | C | D |
| (a) | 1   | 2 | 3 | 4 | (b) 3 | 1 | 4 | 2 |
| (c) | 1   | 3 | 2 | 4 | (d) 2 | 4 | 1 | 3 |

- A. A
- B. B
- C. C
- D. D

Solution: B

- 28. The coloured discharged tubes for a advertisement mainly contain
- A. xenon
- B. helium
- C. neon
- D. argon

Ans; c

solution:

Neon gives brilliant orange red glow in discharge tubes and is widely used for advertisement purposes.

Transweb Educational Services Pvt Ltd B -147, Sector -6 Noida, UP - 201301,

www.askiitians.com Email: info@askiitians.com Tel: 1800-2000-838



- 29. Lone pair and  $\boldsymbol{\pi}$  -bonds exist in
- A. XeF<sub>2</sub>
- B.  $XeO_3$
- C. XeF<sub>6</sub>
- D.  $XeO_4$

Ans. B

solution::



Three  $\boldsymbol{\pi}$  -bonds and one lone pair

- 30. Which of the following is not known?
- A. XeF<sub>6</sub>
- B. XeF<sub>4</sub>
- C. KrF<sub>6</sub>
- D.  $Cs_2XeF_6$

Solution:

KrF<sub>6</sub> is not known.

Solution: C