

G.C.E. A/L Examination July - 2015

Conducted by Field Work Centre, Thondaimanaru In Collaboration with

Zonal Department of Education Jaffna.

Grade :- 12 (2016)	CHEMISTRY	Time :- 3 Hours

01)	The compound	whose molecule ha	as the smallest bond	angle among them is
	1) <i>SO</i> ₂	2) H_2O	3) <i>H</i> ₂ <i>S</i>	4) <i>NH</i> ₃

- 1) SO_2 2) H_2O

02) Which of the following is the most suitable Lewis structure for
$$CNO^-$$
 ion

$$1): \overset{\dots}{N} \stackrel{(-)}{=} C = \overset{\dots}{O}$$

- 2) $\ddot{N} \equiv C \ddot{O}$: (-) 3) $\overset{2-...}{:} \overset{2+}{N} \overset{(-)}{C} \overset{(-)}{O}$:

4):
$$C = N - 0$$
:

5)
$$\overset{..}{0} = \overset{+}{N} - \overset{\cdot}{C}^{2}$$

03) Mass of an atom of element B is five times the mass of an atom of element A. If the mass of an atom of B is 3 times the mass of an atom of
$${}^{12}_{6}C$$
 isotope, the relative atomic mass of A is

- 1)180
- 2) 36
- 3) 18
- 4) 14.4
- 5) 7.2

04) The number of enantiomer pairs among the mono – chloro substituted products formed in the reaction of 2 – methybutane with
$$C\ell_2$$
 in the presence of diffused light is

1) 2

- 3) 4

4) 6

5) None of the above

- 1) $HC \equiv C CH_2CH_2Cl$
- 2) $CH_3 \overset{\parallel}{C} CH_2Br$
- $2) \quad CH_2 = CH CH_2Br$
- -CH₂OH CH₂Br

5)
$$CH_3 - CH - CH_2 - C \downarrow 0$$

06) When boiled with conc.
$$HNO_3$$
 an inorganic salt Y produced a dark coloured gas. The solution obtained above gave a white precipitate with $BaCl_{2(aq)}$ The salt Y could be

1) CuBr

2) Ag_2CO_3

3) *CuI*

4) *AgI*

5) PbO

more: chemistrysabras.weebly.com

	18 $(Na = 23, 0 = 1)$.6)			
	1) 4 <i>g</i>	2) 2 <i>g</i>		3) 1.25 <i>g</i>	
	4) 1 <i>g</i>	5) None of the abo	ove		
08)	The cation that				
	i) Produces a bl	ack precipitate with	H_2S in the presence	e of <i>OH</i> ⁻	
	ii) does not prod	uce a precipitate wit	h H_2S in dil HC	l and	
	iii) forms a blue	coloured solution wi	th concentrated NF	$H_{3(aq)}$ is	
	1) Cu^{2+}	2) Mn^{2+}	3) Co^{2+}	4) Ni^{2+}	5) Fe^{2+}
09)	Which one of th	e following compo	ounds exhibits bo	th enantiomer	and diastereo
	isomerisms?				
	1) $CH_3CH = CH$	$-CH_2CH_3$	$2) CH_3CH = CH$	$-CH-CH_3$	
		$-CH_2CH_3$		COOH	
	3) $CH_3CH - CH$ $C\ell$	$= CH_2$	4) $CH_3 - CH - C$	LH_2UH_3	
	Ċℓ		ÖН		
	5) $CHF = CH - C$	CF_2			
	5) $CHF = CH - C$	H_3			
40\				-31	-£ 1 63
10)		H solution of conce		has a density	01 1.6 gcm -
		of $NaOH$ in the solu	HION		
	(Na = 23, 0 = 16,		20	1	1
	1) $\frac{1}{21}$	2) $\frac{-}{21}$	3) $\frac{20}{21}$	4) $\frac{1}{2}$	5) $\frac{-}{4}$
11)		ing statements regar			
	a) It forms on olds	brida riiban traatad ri	:46 4:1 4:0 II CO	/ II ~ C O	

07) The composition of NaOH in a $250cm^3$ solution prepared by dissolving a particular

mass of NaOH in water was found to be $5 \times 10^3 ppm$ The mass of NaOH dissolved

- a) It forms an aldehyde when treated with dil. $di\ell H_2SO_4$ / $HgSO_4$
- b) It produces $NH_{3(q)}$ when reacting with $NaNH_2$
- c) The product formed when it reacts with H_2 / Lindlar catalyst does not exhibit stereo isomerism.
- d) In its molecule, three carbon atoms are linear Which of the above statements are true
- 1) a, b, c only

- 2) b, c, d only
- 3) c, d only

4) a, c, d only

- 5) c only
- An organic compound A reacts with $Br_2/CC\ell_4$ to form a product B. The product obtained when B is treated with C_2H_5OH/KOH gives a reddish brown precipitate with $NH_3/Cu_2C\ell_2$ The compound which has the possibility to be A
 - 1) $CH_3 C = CH_2$ CH_3
- 2) $CH_3CH = CH CH_3$ 3) $CH_3 C = C CH_3$ $CH_3 CH_3$
- 4) $CH_3CH_2CH = CH_2$
- 5) None of the above

<u> Find more: chemistrysabras.weebly.com</u>

13) Given that the average bond energy values of the bonds C - H, C - C, C = C and H - H at 298 K are 414, 347, 615, and 435 $KJmol^{-1}$

The enthalpy change for the reaction $CH_2 = CH_2 + H_2 \rightarrow CH_3CH_3$ is

- 1) +250kJ
- 2) -250kJ
- 3) +125kJ
- 4) -125kJ
- 5) None of the above
- 14) Which of the following statements regarding the elements in the peridic table is false
 - 1) Group 14 consists of the three types metals, non metals and metalloids
 - 2) Periods 4, 6 contain elements of all the 3 physical states solid, liquid and gas at $25^{\circ}C$
 - 3) All the uni-valent elements are metals
 - 4) Group 17 contain elements of all the 3 physical states solid, liquid and gas
 - 5) In general, d block elements have higher melting points than s block elements
- **15)** In acidic medium, VO_3^- ions are reduced to VO^{2+} ions. In the balancel equation for the above reaction, the correct stoichiometric coefficients of H^+ ions and electrons are respectively
 - 1) 1,4
- 2) 4, 1
- 3) 2, 1
- 4) 5, 1
- 5) 5, 2

Summary of above Instructions for question no. 16 - 20

1	2	3	4	5
Only (a) and (b) correct	Only (b) and (c) correct	Only (c) and (d) correct	Only (d) and (a) correct	Any other response or combination of responses correct.

- **16)** In the hydrogen halides *HF*, *HCl*, *HBr* and *HI* which of the following properties decreases / decrease in the given order of the species?
 - a) Boiling point
 - b) Reducing ability
 - c) Thermsl stability
 - d) Dipole moment
- **17)** With which of the following does H_2O_2 act as an oxidizing agent?
 - a) Mno_4^-/H^+
 - b) Cr^3 / in OH^- Medium
 - c) Water supension of Pbs
 - d) MnO_2

18) Consider the following reaction scheme

$$CH_{3}CHO \longrightarrow HC \equiv CH \longleftarrow CH_{2} - CH_{2}$$

$$(E) \uparrow \qquad \qquad CH_{2} - CH_{2}$$

$$Br \mid Br$$

$$CH_{3}CH_{2}OH \longrightarrow CH_{2} = CH_{2}$$

$$(A) \qquad (B)$$

The correct statement / Statements regarding the above is / are

- a) Al_2O_3/Δ may be used for the conversion of A into B
- b) $Br_{2(aq)}$ can be used to convert B into C
- c) $dilH_2SO_4/HgSO_4$ can be used to obtain E from D
- d) E can be obtained by adding PCC $/CH_2C\ell_2$ to A
- **19)** A gaseous mixture containg H_2 and CH_4 gases has a density of $0.6kgm^{-3}$ at 300k and under a pressure of $3 \times 10^5 Nm^{-2}$ Assuming ideal behavior of gases,, which of the following is / are true?
 - a) The mole fraction of H_2 in the mixture is $\frac{11}{14}$
 - b) The average molar mass relevant to the gas mixture is approximately 5gmol⁻¹
 - c) The partial pressure of CH_4 in the mixture is $\frac{3}{14} \times 10^5 Nm^{-2}$
 - d) Even if the temperature of the system is changed to 500k, the density of the mixture remains the same as $0.6kgm^{-3}$
- **20)** Which of the following contains / contain species of almost the same colour?
 - a) Ag_2CrO_4 , $PbCrO_4$, $BaCrO_4$
 - b) $[FeCl_4]^-, [NiCl_4]^{2-}, [CoCl_4]^{2-}$
 - c) Dry $CuCl_2$, Cds, As_2S_3
 - d) $[Cu(NH_3)_4]^{2+}$, $[Cr(NH_3)_6]^{3+}$, $[Ni(NH_3)_6]^{2+}$
 - Summary of instructions for question 21 25

Statement - I	Statement - II	
1) True	True and correctly explains statement I	
2) True	True but does not explain statement I	
3) True	False	
4) False	True	
5) False	False	

TITU HOTE, CHEITISH YSADIAS, WEEDIY, CO

	Statement I	Statement II
21)	Acetalene is more reactive than	$C \equiv C$ bond energy is greater than
	ethane	<i>C</i> − <i>C</i> bond energy
22)	Endothermic reactions occuring	A reaction is spontaneous if only
	with a decrease in	the Gibb's free energy change
	entropy cannot be spontaneous	is negative
	at any temperature	
23)	Aqueous solution of NH_3	Both Cu^{2+} and $Ni_{(aq)}^{2+}$
	cannot be used for distinguishing	form deep blue
	Cu^{2+} , and Ni^{2+} solution	complex with excess NH_3 solution.
24)	$NH_3 /AgNO_3$ canonot be	Both 1 – butyne and 2 – butyne give
	used for differentiating	the same product with $dil\ H_2\ SO_4$ /
	Ç	
	1- butyne and 2 - butyne	H_gSO_4
25)	The boiling point of 2 - methylbutane	The strength of London forces decrease
	is greater than that of $2-2$ dimethy /	when the number of branches
	·	increases in the isomers of alkanes
	propane	
		having the same molecular formula.