

G.C.E. A/L Examination July - 2015

Conducted by Field Work Centre, Thondaimanaru In Collaboration with

Zonal Department of Education Jaffna.

Grade :- 12 (2016)

CHEMISTRY

Part - II (A)

Structured Essay

*	An	swer all Questions.					
(01)	(01) a) Complete the following statements						
		i)	Among <i>Na</i> , <i>K</i> and <i>Rb</i> the element which has the lowest density is				
		ii)	Among $NO_1 NO_2$ and CO_2 , the one which is insoluble in water is				
		iii)	Of the chlorides NCl_3 , PCl_3 and BCl_3 the one which gives an acidic compound an				
			a basic compound on hydrolysis is				
		iv)	Among Li_2O , K_2O_2 and MgO the one which reacts with O_2 is				
		v)	The species which has the greatest $N - O$ bond length among NO_3^- , NO_2 and NO_2^+				
	b) The skeletal structure of $H_2PO_3^-$ ion is given below. $\begin{array}{c} & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $						
i) Draw the most acceptable Lewis structure for the above ion							
		ii)	Draw the resonance structures of it and comment on their relative stabilities.				
	F	ind	more: chemistrysabras.weebly.com				
Grade:	12 tv	(2016) VIII	- July - 2015 Chemistry Sabras Chemistry (A)				

iii) Write the shape and the electron pair geometry around the following atoms in the above ion.

	Atom	Shape around the atom	Electron pair geometry
i)	Р		
ii)	O attached to H		

- c) *X*, *and Y* are two consecutive elements belonging to the same period in the periodic table. The first ionization energy of Y is greater than that X. The salts of Y do not impart any characteristic colour in the flame test. X reacts rapidly with cold water to give a solution P and gas Q while Y reacts with steam to give the compound R and the gas Q
 - i) Identify the elements X and Y
 - X Y - ii) Identify the solution P and the compound R P - R - iii) What could be gas Q? iv) What are the compounds that may be formed when Y is ignited in air? Write balanced chemical equations for the reactions that the element X undergoes v) when O₂ gas is in excess. vi) One of the compounds of Y mentioned in part (iv) above reacts with water and forms a gas. Write the balanced chemical equational for the reaction of that gas with excess of $Cl_{2(g)}$ and mention a test for identifying the above stated gas
- (02) (a) A white substance A reacts with dil. H_2SO_4 to produce a colouress gas B and a colourlees solution C. The reaction between B and $K_2Cr_2O_7$ solution produces a green solution and a slightly coloured precipitate D. The substance D burns in air to produce a gas and a colourless liquid. Anhydrous $CuSO_4$ is turned blue on addition of this colourless liquid. Addition of aqueous NH_3 or NaOH to C produces first a precipitate which dissolves in the excess of the respective reagent to produce a clear solution in each case.

Grade: 12 (2016) - July - 2015 Chemistrysabras.weebly.com

twitter: ChemistrySabras

Chemistry (A)

	i)	Identify the species from A to E
		A
		B
		C
		D
	ii)	Write balanced equations for the reactions involved
	11)	while bulanced equations for the reactions involved.
	(b)	\dot{v} Write the charged formulae of the stable order formed by the elements in the 2^{nd}
	(0)	period in their highest oxidation states
		Mention clearly and separately the acidic / basic / amphoteric / neutral nature of each
		of the above oxides
		ii) Mantion the variation trand observed in each of the following properties of the
		element in the second period across the period from left to right
		i) Electronegativity
		ii) 2 nd ionization energy
	c)	The element M belongs to $3d$ – series M reacts with dry $Cl_{2(g)}$ to form a yellow colured
		solid X
		$H_2 O_{(l)}$ Blue $dil NH_2 (r)$
		solution A Blue precipitate
		Excess conc
		$\begin{array}{c} \text{Excess conc} \\ \text{HCl} \\ \end{array} \qquad \left(\begin{array}{c} \text{Excess} \\ \text{NH}_{2(nq)} \\ \end{array} \right)$
		Yellow solution C Solution D
		i) Identify the element M
		-,
		ii) Write the electron configuration of <i>M</i> in the usual manner as $1s^2 2s^2$
	F	ind more: chemistrysabras weebly com
Grade:	12	(2016) - July - 2015 3 Chemistry (A)
	tv	vitter: ChemistrySabras

		iii)	Write the formulae and the IUPAC names responsible for the colours of each of the
			A, B, C and D
		iv)	What is the colour of the solution D
		v)	What could be observed if SO_2 gas is passed through the solution C
(03)	a)	i)	What is meant by the "compressibility factor (Z)" of a gas
		ii)	Draw in the diagram given below the plot showing the variation of the compressibility
		·••)	factor against pressure for each of the gases NH_3 , He and an ideal gas. Label each of
		1	them.
			Z
			Pressure (P)
			iii) Using the ideal gas equation and the equation for kinetic molecular theory, show
			that $\overline{C^2} = \frac{3RT}{M}$ where <i>M</i> is the molar mass of the gas.
			iv) The element X exists as a triatomic gas at room temperature. If its root mean
			square speed at $227^{\circ}C$ is $500ms^{-1}$,
			What is the relative atomic mass of X
	Fi	n/	d more: chemistrycabrae weehly.com
Grade:	12 (2	2016) - July - 2015 4 Chemistry (A)
	ťW	'It'	ter: ChemistrySabras

b)	i)	A gaseous mixture which contains the two gases C_2H_6 and C_3H_8 occupies a volume of 11.2 dm ³ under STP conditions when the mixture was subjected to complete combustion, 950 kJ heat was evolved Enthalpies of combustion of $C_2 H_{o(g)}$ and $C_3H_{8(g)}$ are - 1560 kJmol ⁻¹ and $- 2240$ kJ mol ⁻¹ respectively. Find the mass% of C_2H_6 in the mixture ($C = 12, H = 1$)					
	ii)	When 2g of a gas A was introduced into an evacuated vessel at $25^{\circ}C$, the					
		pressure inside the vessel was $1 \times 10^5 Nm^{-2}$ when 3g of another gas B was further introduced into the vessel, the pressure inside it was found to increase to					
		$1.5 \times 10^5 Nm^{-2}$ Assuming ideal behavior calculate the ratio of the molar					
		masses $M_A: M_B$					
(04) A)	The non	- cyclic hydrocarbon P with the molecular formula C_6H_{12} exhibit enantiomer					
i)	Draw the p	bossible structure for <i>P</i> in the box below.					
		Р					
ii)	ii) Does <i>P</i> exhibit geometrical isomerism?						
iii) Draw the structure of the product obtained when P is heated with Ni/H_2							
	ind ~						
Grade: 12	<u>1110 1</u> (2016) - Ju	ly 2015 to 5 Chemistry (A)					
tv	vitter	: ChemistrySabras					

	A		В	
ii) V	Write the reagents L, M and	Ν		
	L			
	М -			
-	N			
1	IV			
iii) V	Write the structure of the inte	ermediate formed in react	ion (3) above	
•				
d) C	omplete the following table	by writing the type of me	chanism and the n	najor product in
d) Co	omplete the following table f the reactions.	by writing the type of me	chanism and the n	najor product in
d) Co of Sy	omplete the following table f the reactions. ymbols for mechanism types	by writing the type of me	chanism and the n	najor product in
d) Co of Sy E	omplete the following table f the reactions. ymbols for mechanism types Electrophilic addition (A_E)	by writing the type of me	chanism and the n	najor product in
d) Co of Sy E E	omplete the following table f the reactions. ymbols for mechanism types Electrophilic addition (A_E) Electrophilic substitution (A_E)	by writing the type of me s: S_E)	chanism and the n	najor product in
d) Co of Sy E E N	omplete the following table f the reactions. ymbols for mechanism types Electrophilic addition (A_E) Electrophilic substitution (A_N)	by writing the type of me s: S_E)	chanism and the n	najor product in
d) Co of Sy E E N N	omplete the following table f the reactions. ymbols for mechanism types Electrophilic addition (A_E) Electrophilic substitution (A_N) Nucleophilic substitution (A_N)	by writing the type of me s: S_E) S_N)	chanism and the n	najor product in
d) Co of Sy E E N N E	omplete the following table f the reactions. ymbols for mechanism types Electrophilic addition (A_E) Electrophilic substitution (Nucleophilic addition (A_N) Nucleophilic substitution (Eliminination (E)	by writing the type of me s: S_E) S_N)	chanism and the n	najor product in
d) Co of Sy E E N N E F	omplete the following table f the reactions. ymbols for mechanism types Electrophilic addition (A_E) Electrophilic substitution (Nucleophilic addition (A_N) Nucleophilic substitution (Eliminination (E) Free radical substitution (F_R)	by writing the type of me s: S_E) S_N)	chanism and the n	najor product in
d) Co of Sy E E N N E F	omplete the following table f the reactions. ymbols for mechanism types Electrophilic addition (A_E) Electrophilic substitution (A_N) Nucleophilic addition (A_N) Nucleophilic substitution (E) Free radical substitution (F_R) Reactant	by writing the type of me S_E : S_E) S_N) Reagent	echanism and the n Mechanism type	najor product in Major produ
d) Co of Sy E E N N E F	omplete the following tablef the reactions.ymbols for mechanism typesElectrophilic addition (A_E) Electrophilic substitution (A_N)Nucleophilic addition (A_N) Nucleophilic substitution (E)Free radical substitution (F_R) Reactant $CH_3CH = CH_2$	by writing the type of me S_E : S_E) S_N) Reagent <i>HBr</i>	Mechanism and the n	najor product in Major produ
 d) Colored of Sy E N N E F 	omplete the following table f the reactions. ymbols for mechanism types Electrophilic addition (A_E) Electrophilic substitution (A_N) Nucleophilic addition (A_N) Nucleophilic substitution (E) Free radical substitution (F_R) Free radical substitution (F_R) Reactant $CH_3CH = CH_2$ $CH_3CH - CH_2CH_3$ H OH	by writing the type of me s: S_E) S_N) Reagent HBr Al_2O_3/Δ	Mechanism and the n	Major product in
 d) Colored of System E M E F 1) 2) 3) 	omplete the following table f the reactions. ymbols for mechanism types Electrophilic addition (A_E) Electrophilic substitution (A Nucleophilic addition (A_N) Nucleophilic substitution (A Eliminination (E) Free radical substitution (F_R) Reactant $CH_3CH = CH_2$ $CH_3CH - CH_2CH_3$ OH $CH_3CH_2CHBrCH_3$	by writing the type of me s: S_E) S_N) Reagent HBr Al_2O_3/Δ Ethanol / KOH	Mechanism and the n	Major product in
 d) Colored of Synchronic Synchronic Synchronic Synchronic Synchrony (Second content of the synchronic Synchronic	omplete the following tablef the reactions.ymbols for mechanism typesElectrophilic addition (A_E) Electrophilic substitution (A_N) Sucleophilic addition (A_N) Nucleophilic addition (A_N) Nucleophilic substitution (A_N) Nucleophilic substitution (A_N) Nucleophilic substitution (A_N) Nucleophilic substitution (E) Free radical substitution (F_R) CH_3CH = CH_2 $CH_3CH = CH_2$ $CH_3CH = CH_2$ OH OH $CH_3CH - CH_2CH_3$ OH $CH_3CH_2 - CH_3$	by writing the type of me s: S_E) S_N) Reagent HBr Al_2O_3/Δ Ethanol / KOH Equimole of Cl_2 /	Mechanism and the n	Major product in

	5)	$CH_3CH = CHCH_3$	Conc H_2SO_A		
	Find	d more: chem	histrysabras	s.weeblv	.com
Grade:	12 (2016) - July <u>- 2</u> 015			Chemistry (A)
	twit	ter: Chemistr	ySabras		