Royal College Colombo 07

Answer all the questions.

රාජකීය විදාහලය කොළඹ 07

General Certificate of Education (Adv. Level) Examination, 2010

අධායන පොදු සහතික පතු (උසස් පෙළ) විභාගය 2010

Grade 13 - Final Term Test July 2010

13 වන ශේණිය අවසාන වාර පරීකෳණය 2010 ජූලි

Time - 2 Hours

Chemistry I

1		

1)		-	s the maximum second	_	~				
	1. M g	2. Al	3. Na	4. S	5. K				
2)	 Which one of the following statement is the most accurate about bonds? Only bond that forms between two atoms may not be a π bond. π bond is more stable than σ bond. Lateral overlapping of hybrid orbitals form π bonds. Lateral overlapping of s and p orbitals, form π bonds. σ bond which is formed by linear overlapping is always non-polar. 								
3)	22 cm ³ of the all concentration of the	bove solution is dine diluted H ₂ SO ₄ solu	tion is 96% (w/w). In the second sec	with distilled $O = 16$)	water. What is the				
4)	Which one of the f	following element has	s the maximum electro	opositivity?					
,	1. Mg	2. Na	3. Al	4. Si	5. F				
5)	 Gap between th Emission of race energy levels. Lines of the Hy There are lot of 	e lines of a line spect diation occurs during drogen spectrum dive similarities between	is true about the Hydro frum increases to the ingest the electrons transfer erge rapidly when increases the emission spectrum is relative to the H α	ncreasing direction from lower endereasing the frequence of H atom and	n of energy. ergy levels to upper ncy.				
6)	Which one of the F ⁻ correctly. 1. 136 pm , 140 2. 136 pm , 171 3. 171 pm , 140 4. 171 pm , 140 5. 140 pm , 171	pm , 171 pm pm , 140 pm pm , 136 pm pm , 140 pm	the change of radii	of the ionic sp	ecies N^{3-} , O^{2-} and				
7)	Relative molecular	r mass of a hydrocar	bon is 70 Which on	e would be the n	umber of non cyclic				

^{1.} ³Find more the chemistry sabras. we ebly.com

isomers of that hydrocarbon? (C = 12, H = 1)

- Inorganic salt D evolved coloured gas X and formed colourless solution Y with diluted HCl. Gas X 9) turns into colourless solution with acidified KMnO₄. Z didn't give a colour to the Bunsen flame and added excess of K₂CO₃ solution to the solution Y was formed white precipitate. D would be.
 - 1. NaBr
- 2. KNO₂
- 3. $Ca(NO_2)_2$
- 4. Sr(NO₂)₂
- 5. $Mg(NO_2)_2$
- 10) Which one of the following molecule has the unequal bond lengths around the central atom.
 - 1. PF₅
- 2. CF₄
- 3. PF₃
- 4. BF₃

11) Consider the following equilibrium.

$$O_2(g) + 2NO(g) \rightleftharpoons N_2O_4(g)$$

O₂(g) and NO(g) is allowed to reach to the equilibrium in 1:2 molar ratios under high temperature in a closed vessel 75% of NO(g) is remained in the equilibrium system. what is the molar ratio of NO(g): $N_2O_4(g)$ in the equilibrium system.

- 1. 2:1
- 2. 3:1
- 3. 1:2
- 4. 6:1
- 5. 4:1
- Solution was prepared by mixing 500 cm³ of 0.01 mol dm⁻³ NaCl(aq), 250 cm³ of 0.02 mol dm⁻³ 12) BaCl₂(aq) and 250 cm³ of 0.02 mol dm⁻³ NaNO₃ (aq) at 25⁰C. After that the solution was saturated with AgCl(s). What would be the Ag $^+$ (aq) concentration? [AgCl] $K_{sp} = 1.0 \times 10^{-10} \text{ mol}^2 \text{ dm}^{-6}$ 1. $1.0 \times 10^{-6} \text{ mol dm}^{-3}$ 2. $1.0 \times 10^{-4} \text{ mol dm}^{-3}$ 3. $1.0 \times 10^{-8} \text{ mol dm}^{-3}$ 4. $1.0 \times 10^{-10} \text{ mol dm}^{-3}$

- 5. 1.0 x 10⁻⁵ mol dm⁻³
- Which one of the following statement is the most accurate about alkynes. 13)
 - 1. Alkynes form white precipitate with ammonical AgNO₃ (aq)
 - 2. Alkynes form red precipitate with ammonical Cu₂Cl₂ (aq)
 - 3. Alkynes evolve $H_2(g)$ with solid Na(s)
 - 4. Alkynes can decolourise Br₂(aq)
 - 5. All the above statements are correct.

Which one of the correct IUPAC nomenclature of the following compound.

1.
$$2 - amino - 2 - ethyl - 5 - formylhex - 3 - enoic acid$$

1. $2 - amino - 2 - ethyl - 5 - oxohex - 3 - enoic acid$

2. $2 - amino - 2 - ethyl - 5 - oxohex - 3 - enoic acid$

3. $5 - amino - 5 - formylhept - 3 - en - 2 - one$

4. $2 - amino - 2 - ethyl - 5 - oxohexenoic acid$

- 5. 2 amino 2 ethyl 5 oxopentenoic acid
- One method of industrial production of Hydrogen gas is as follows. 15)

$$C(s) + H_2O(g) \longrightarrow CO(g) + H_2(g)$$
 $\Delta H^{\phi} = +131 \text{ KJ}$

$$\Lambda H^{\phi} = +131 \text{ KJ}$$

To have more amount of H₂(g)

- 1. Catalyst should be added to the system.
- 2. C(s) should be added to the system.
- 3. Temperature should be reduced in the system.
- 4. (1969) should be added to the systems trysabras. weebly.com
 5. None of the above can increase the amount of H₂(g)

16) Which one is the false pair of resonance structures.

1.
$$H_2C = N^+ = N^- \iff H_2C - N^+ \equiv N$$

2.
$$H_2C = O$$
 \leftrightarrow $H_2C^+ - O^-$

3.
$$H_2N - O - H \leftrightarrow H_2N = O - H$$

4.
$$R_2 - C - C = O$$
 \leftrightarrow $R_2C = C - O^+$

5.
$$R - C - O - H$$
 \leftrightarrow $R - C = O^+ H$

17)
$$A = CH_3NH_2$$
 $B = CH_3CH_2NH_2$ $C = \bigcirc$ $D = \bigcirc$ $E = \bigcirc$ O_2 C_1

The accurate ascending order of basicity of the above species would be,

1.
$$D < E < C < A < B$$

2.
$$D < E < C < B < A$$

3.
$$E < D < C < A < B$$

4.
$$D < C < E < B < A$$

5.
$$C < E < D < A < B$$

Organic compound X produces a pleasant smell with ethanol and few drops of H₂SO₄ when heating. X turns Br₂(aq) colourless X shows the geometrical isomerism but not after heating it with sodalime. X would be,

1.
$$CH = CH - CH_2COOH$$
 2. $CH_2CH = CH COOH$ CH_3 $COOH$ $C = C - COOH$

- 5. $CH_3CH = CHCH_2COOH$
- 19) Which one of the following group of compounds that all can undergo hydrolysis at room temperature.

1.
$$Cl$$
 $O = C - Cl$ CH_2C

2. $CH_3COOC_2H_5$, $CH_3CH_2 - \overset{\text{O}}{C} - Cl$, CH_3CH_2MgBr

3.
$$CH_3CH_2CH_2NH_2$$
, CH_2CI $CH_3CH_2-C=CI$ CH_2CI CH_2CI CH_2CI CH_2CI CH_2CI CH_3CH_2MgBr , $CH_3CH_2-C=CI$

20) Consider the following conversion.

What is the most suitable order of reactants to the above conversion.

- 1. Sn, conc. $HCl \mid Br_2$, $Fe \mid CnO$, $NaOH \mid NaNO_2$, $HCl (5 10^0 C)$
- 2. $H^{+}/KMnO_{4} \mid Br_{2}$, FeBr₃ | NaNO₂, HCl (5 10⁰C) | H₂O/ Δ
- 3. conc. HNO₃, conc. $H_2SO_4 \mid Br_2$, FeBr₃ | Sn, conc. HCl | NaNO₂, HCl (5 10⁰C) | H_2O/Δ
- 4. conc. H_2SO_4 , conc. $HNO_3 \mid Br_2$, $FeBr_3 \mid NaNO_2$, $HCl(aq) \mid H_2O/\Delta$
- 5. H₂SO₄, HNO₃ | NaNO₂, HCl | Br₂, Fe | Sn, conc. HCl | H₂O

21)
$$CH_3$$
 Which one of the following statement is false about the alcohol. $CH_2 = CH - C - OH$

- 1. It reacts with PBr₃
- 2. $Br_2(1)$ turns colourless.
- 3. Can be oxidized to a ketone by acidified KMnO₄
- 4. Gives chloro compound with anhydrous ZnCl₂ and conc. HCl
- 5. Can eliminate water molecule by heating with Al₂O₃
- What is the compound that you get when Propanone (CH₃COCH₃) and ethanal (CH₃CHO) is treated with dilute NaOH

23) Consider the following reaction.

$$2A + B \rightarrow A_2B$$

Order of the reaction with respect to A is zero and with respect to B is 2. At initial rate concentration of A is 2.5×10^{-2} mol dm⁻³ and concentration of B is 1.0×10^{-2} mol dm⁻³. What could

be the concentration of A when the rate is $\frac{1}{4}$ of the initial rate.

- 1. $5.0 \times 10^{-3} \text{ mol dm}^{-3}$
- 2. $1.5 \times 10^{-2} \text{ mol dm}^{-3}$
- 3. $1.0 \times 10^{-3} \text{ mol dm}^{-3}$
- 4. $2.45 \times 10^{-3} \text{ mol dm}^{-3}$
- 5. 1.25 x 10⁻² mol dm⁻³
- 23.7 g of NH_4HCO_3 (s) is heated up to 77^0C in a closed vessel. Pressure inside the vessel after complete dissociation of NH_4HCO_3 (s) is $4.157x10^5$ Nm^{-2} . What is the volume of the vessel. (Assume all the gaseous products behave ideally.) (H = 1.0 N = 14 C= 12 O = 16)
 - ^{1. 8}Find more^{2.7}chiemistrysabras.weebly.com^{6.2 dm3}

27)	What is the 1. Potassit 2. Potassit 3. Potassit 4. Potassit 5. Tripotas	m pentacyanocart m pentacyanocart m pentacyanocart	rborniumiron(II) conyliron(II) conylferrate(II) conylfrrates(III)	O]				
28)	temperatur NaOH, ligh	e. It dissolves in dila ht green precipitate is f few drops of KCN t	HCl and forms formed, dissolved	green l in e	complex. That sol xcess $NH_3(aq)$ and g is complex forms light	water or air at room ution is basified with ave blue-violet colour. ht green precipitate M 5. Ni		
29)	1.0g of an Again it is compound	organic compound diexacted with 25 cm ³ retains in the aqueous	ssolved in 100 cm of ether and is se solution after the	parate secoi	water. It is extracted aqueous layer. Find extraction.	with 50 cm ³ of ether.		
these	1. 0.067 g 2. 0.8 g 3. 0.13 g 4. 0.2 g 5. 0.16 g 30) K ₃ PO ₄ and K ₂ SO ₄ was dissolved in water at 25°C and prepared an aqueous solution. 100 cm ³ from the above solution and was added 0.005 mol dm ⁻³ Ba(OH) ₂ (aq) in excees that couldn't form precipitate furthermore. Required volume of Ba(OH) ₂ (aq) was 200 cm ³ . Precipitate gained was filtered, dried and weighed. Weight of the precipitate was 0.1435 g. concentration of SO ₄ ²⁻ (aq) in the filtrate is 1.1x10 ⁻⁷ mol dm ⁻³ . Solubility product of BaSO ₄ (s) at 25°C = 1.1x10 ⁻¹⁰ mol ² dm ⁻⁶ . Solubility product of Ba ₃ (PO ₄) ₂ at 25°C is 3.4x10 ⁻²³ mol ⁵ dm ⁻¹⁵ . What is the amount of Ba ²⁺ precipitated. 1. 7.0 x 10 ⁻⁴ 2. 1.0 x 10 ⁻³ 3. 3.0 x 10 ⁻³ 4. 2.0 x 10 ⁻⁴ 5. 4.0 x 10 ⁻⁴ For each of the questions 31 to 40 four responses (a), (b), (c) and (d) are given. One or more of these is/are correct. Select the correct response/responses. In accordance with the instructions on your answer sheet, mark							
	1	2	3		4	5		
Only (b) C	(a) and Correct	Only (b) and (c) Correct	Only (c) and Correct	(d)	Only (d) and (a) Correct	Any other number of combination of responses correct.		
Which one of the statement/s is/are true about allotropic forms of Sulphur. (a) Monoclinic sulphur is more stable than the rhombic sulphur. (b) Rhombic sulphur as well as monoclinic sulphur is soluble in CS ₂ (c) Bubbling of H ₂ S in to the aqueous HNO ₃ solution produces colloidal sulphur. (d) Rhombic sulphur can be converted in to monoclinic sulphur but monoclinic sulphur can't former throughout sulphur interpretable sulphur sulphur can't former throughout sulphur interpretable sulphur can't former throughout sulphur sulphur can't former throughout sulphur sulphur can't former throughout sulphur sulphur sulphur can't former throughout sulphur sulphur sulphur sulphur can't former throughout sulphur sul								

Royal Coltwittenist©hemistrySabras

By the mixing of two liquids A and B form an ideal solution. Vapour pressure of a solution contains 3 mol of A and 1 mol of B is 2.5x10³ Nm⁻² at 27⁰C. Saturated vapour pressure of A at that

pH value of aqueous weak mono basic HAc acid which has the concentration 1.0 x 10⁻³ mol dm⁻³

4. 2

5. 1

Grade 13 Final Term Test 2010 - July

is 5.0. What is the pH value of 1.0×10^{-1} mol dm⁻³ HAc(aq) at the same temperature. 3. 3

temperature is 2.0×10^3 Nm⁻². What is the molar ratio between A and B in vapour phase at 27° C.

- Which one of the following statement/s is/are true. 32)
 - Rate constant of the endothermic reaction increases with temperature.
 - In a reversible reaction rate constants of forward and backward reactions will increase with (b) temperature.
 - (c) Rate constant of the exothermic reaction decreases with increasing temperature.
 - (d) In the reversible reaction the rate constant of forward reaction increases and the backward reaction decreases with increasing temperature.
- It has found that the analysis of products of CO₂(g) and H₂O(l) are in 44:9 mass ratio in an organic 33) compound with is combusted with excess of $O_2(g)$. Which of the following compound/s it/they would be.
 - (a)

(b) $H - C \equiv C - H$

- (d) CH_3 CH = CH C H
- 34) Which one of the following statement/s is/are true?
 - Ascending order of the strengths of Lewis acidity is BCl₃ < AlCl₃ < GaCl₃
 - Ascending order of the thermal stability is BeCO₃ < MgCO₃ < CaCO₃ < BaCO₃ (b)
 - Bond angle increases as H₂Se < H₂S < H₂O (c)
 - Covalent nature increases as TiCl₂ < TiCl₃ < TiCl
- Which one of the following statement/s is/are true? 35)
 - The existence of nucleus was discovered for the first time by Rutherford through α ray diffraction experiment.
 - (b) Bohrs theory can be used only to explain about the atom or ion which contains one electron.
 - Infra red waves in the electro magnetic spectrum have the longest wave lengths. (c)
 - Maximum number of electrons in p orbital is 6. (d)
- Which one of the following compound/s would produce C = N product with Acetone 36) (CH₃COCH₃).
 - $C_6H_5NH_2$ (a)
 - (b) $(CH_3)_3N$
 - (c) C₆H₅NHC₆H₅
 - (d) C₆H₅NHNH₂
- Which one of the following statement/s is/are correct?
 - (a) $P = \frac{2}{3}N(KE)$

(c) $P = \frac{1}{3} m N \overline{C^2}$

- (b) $P = \frac{nRT}{V}$ (d) $\overline{C}^2 = \sqrt{\frac{3RT}{m}}$
- 38) Which one of the following set of compounds that cannot be existed together in an aqueous solution.
 - Na₂CO₃ and NaHCO₃ (a)
 - (b) Na₂CO₃ and NaOH
 - NaHCO3 and HCl (c)
 - (d) Firth or the Chemistrysabras.weebly.com

- 39) Which one of the following statement/s is/are true.
 - (a) Sn(II) is a strong oxidizing agent.
 - (b) PbCl₂ forms complex ion (NH₄)₂[PbCl₆] with ammonia.
 - (c) PbI₄ can't be prepared.
 - (d) SnCl₂ is a linear molecule.
- 40) Which one of the following statement/s is/are true,
 - (a) Main component of the cinnamon oil is cinnamaldehyde.
 - (b) Latex of rubber contains polyisoprene.
 - (c) Citral can be extracted by the Lemon grass.
 - (d) Buds of clove contain eugenole

In questions 41 to 50, two statements are given in respect of each question. From the table given below, select the response out of the responses 1, 2, 3, 4 and 5 that best fits the two statements given for each of the questions and mark appropriately on your answer sheet.

	1 st statement	2 nd statement
1	True	True, and correctly explains the first statement
2	True	True, but does not explain the first statement correctly.
3	True	False
4	False	True
5	False	False

1	1 st statement	2 nd statement
41)	Benzoyl alcohol is more acidic than para nitro	Nitro group draws electrons away from the
	benzoyl alcohol.	benzene ring.
42)	Standard Lattice energy of MgCl ₂ is greater	Ionic radius of Na is lesser than the ionic
	than the Standard lattice enthalpy of NaCl.	radius of Mg ²⁺ .
43)	Dark red arises in the mixture of Fe 3+ (aq) and	Fe ³⁺ ions get precipitated as Fe(OH) ₃ (s) with
	NH ₄ CNS(aq), reduces with the addition of	NaOH(aq).
	NaOH.	
44)	Concentration of H ⁺ (aq) in 1.0 mol dm ⁻³ HCl	HCl can act as a strong acid in aqueous
	solution at 25 ^o C is 1.0 mol dm ⁻³ .	medium.
45)	Product given by the reaction between ethanal	O _{II}
	and HCN is non sterioisometric.	Reaction between $CH_3 - \overset{\parallel}{C} - H$ and HCN is a
		nucleophilic addition.
46)	pH value is approximately 7 when it is getting	Phenolphthalein as well as methyl orange can
	closer to the end point of 0.1 mol dm ⁻³	be used for normal titration of F ₃ COOH and
	F ₃ CCOOH and 0.1 mol dm ⁻³ NaOH titration at	NaOH.
	25°C.	

47)	Velocity of cathode rays equal to the velocity	Cathode rays can't be deflected by a magnetic		
	of light ray.	field.		
48)	Temporary hardness appears according to the			
	bicarbonate ions of Ca ²⁺ and Mg ²⁺ .	successful method to remove temporary hardness in water.		
49)	Calculations done by using Van der Waals	Real gases reach to ideal behaviour at low		
	equation for real gases having high	pressures and high temperatures.		
	temperatures and low pressures is incorrect.			
50)	Application of tin metal on iron to prevent	Tin is more reactive than iron.		
	rusting is an anodic protection.			

51) Standard enthalpy changes of some reactions are given below.

i.
$$2CO(g) + O_2(g) \rightarrow 2CO_2(g)$$

$$\Delta H^{\theta} = -566 \text{ KJ}$$

ii.
$$CO_2(g) + 2H_2O(l) \rightarrow CH_3OH(l) + \frac{3}{2} O_2(g)$$
 $\Delta H^{\theta} = +715 \text{ KJ}$

$$\Delta H^{\theta} = +715 \text{ KJ}$$

iii.
$$H_2(g) + \frac{1}{2}O_2(g) \rightarrow H_2O(l)$$

$$\Delta H^{\theta} = -286 \text{ KJ}$$

What would be the standard enthalpy of the following reaction.

$$CO(g) + 2H_2(g) \rightarrow CH_3OH(1)$$

$$\Delta H^{\theta} = ?$$

Consider the following equilibrium. 52)

 $NH_4HS(s) \Longrightarrow NH_3(g) + H_2S(g)$

0.51 g of NH₄HS(s) is allowed to reach the equilibrium in 5.0 dm³ closed vessel at 327⁰C. Kp at 327° C is $4.0 \times 10^{4} \text{ N}^{2} \text{m}^{-4}$. What is the amount of molar dissociation of NH₄HS(s).

1. 0.01

0.772 g of chloride M which is a transition metal, completely dissolved in water and added excess 53) of AgNO₃(aq). Precipitate formed is filtered, washed dried and weighed. Mass of the precipitate was 2.151 g. Molecular formula of the metal chloride would be,

 $(Ag = 108 \ Cl = 35.5 \ M = 48)$

- 1. MCl₂
- 2. M₂Cl₃
- 3. MCl₄
- 4. MCl
- 5. MCl₃

Two standard electrode potentials are as follows.

$$Ag^{+}$$
 (aq 1.0 mol dm⁻³) | $Ag(s)$ $E^{\varrho} = +0.80 \text{ V}$

Pt (s),
$$Cl_2$$
 (g 1.0 atm) | Cl^- (aq 1.0 mol dm⁻³) $E^Q = +1.36 \text{ V}$

Which one of the following statement is correct about the electro chemical cell which is made by using the above two electrodes under the standard conditions.

- 1. Chlorine electrode is the cathode
- 2. E.m.f.of the cell is +2.16V
- 3. Oxidation occurs at Ag electrode. 4. E.m.f value of the cell is independent of temperature. 5. Oxidation occurs at Ag electrode. 5. Oxidation occurs at Ag electrode. 4. E.m.f value of the cell is independent of temperature. 5. Oxidation occurs at Ag electrode. 5. Oxidation occurs at Ag electrode. 4. E.m.f value of the cell is independent of temperature. 5. Oxidation occurs at Ag electrode. 5. Oxidation occurs at Ag electrode. 4. E.m.f value of the cell is independent of temperature. 5. Oxidation occurs at Ag electrode. 5. Oxidation occurs at Ag electrode. 5. Oxidation occurs at Ag electrode. 6. Oxidation occurs at Ag electrode. 6

	 Combustion of NI If NH₃ is passed o Industrial product 	n heated CuO produ	•	ow pressures.	
	4. Production of NH5. All the above are		eaction		
57)	 Mn²⁺ is a self cata MnO₂ is a catalyst Cr₂O₃/ZnO use as 	catalyst in the polyralyst in MnO_4^- and the in $KClO_3(s)$ thermal a catalyst in the pro-	merization of ethane a $C_2O_4^{2-}$ reaction.	and propene. y using CO and H ₂ .	
58)	Which one of the fold. Phosphorous is storaged. It exists in allotrog. Undergoes disprog. Forms cyclic oxia. More reactive that	ored in water. pic forms. portionation with th cids.	about phosphorous. e presence of dil. Aci	ds.	
59)	A bottle containing S by a A/L student to well and weighted 5 solution was measure was added and kept collected under s.t.p. would be, $(O_2(g))$ belong $Sn = 119$ $Cl - 35.5$	determine the mass 5.88g from it. Disse ed by using a pipetto it for some minutes was 112 cm ³ . Which haves as an ideal gas	percentage of SnCl ₂ (olved it in 100 cm ³ e and put into the titra s. After that it was ac th one of the followin	(s) in the salt mixtur of distilled water. 2 ation flask. 0.2 mol d dded excess of Ag ₂ C ag value for mass per	e. Mixed the sale 5 cm ³ from that cm ⁻³ H ₂ O ₂ 50 cm ³ 0 and evolved O ₂ centage SnCl ₂ (s)
	1. 12.36%	2. 50.54%	3. 64.62%	4. 85.42%	5. 75.84%
60)	This experiment is a swimming pool was After ten minutes sul of I ₂ solution require of O ₂ in the water of	taken into 500 cm ³ ; phuric acid was added 20 cm ³ of 0.02	reagent bottle and Mr led and liberated I ₂ w mol dm ⁻³ Na ₂ S ₂ O ₃ (a	nSO ₄ and alkaline Kl was titrated with Na ₂ S	S_2O_3 (aq). 50 cm ²
		2. 16.0 ppm	3. 32.0 ppm	4. 64.0 ppm	5. 120.0 ppm

Find more: chemistrysabras.weebly.com

Royal Colter it Chemistry Sabras Grade 13 Final Term Test 2010 - July

 $4. NBr_3$

5. NAs_3

Which one of the following tri halide is the least basic.

 $2. NF_3$

Which one of the following statement is true.

1. NCl₃

56)

Royal College Colombo 07

රාජකීය විදාහාලය කොළඹ 07

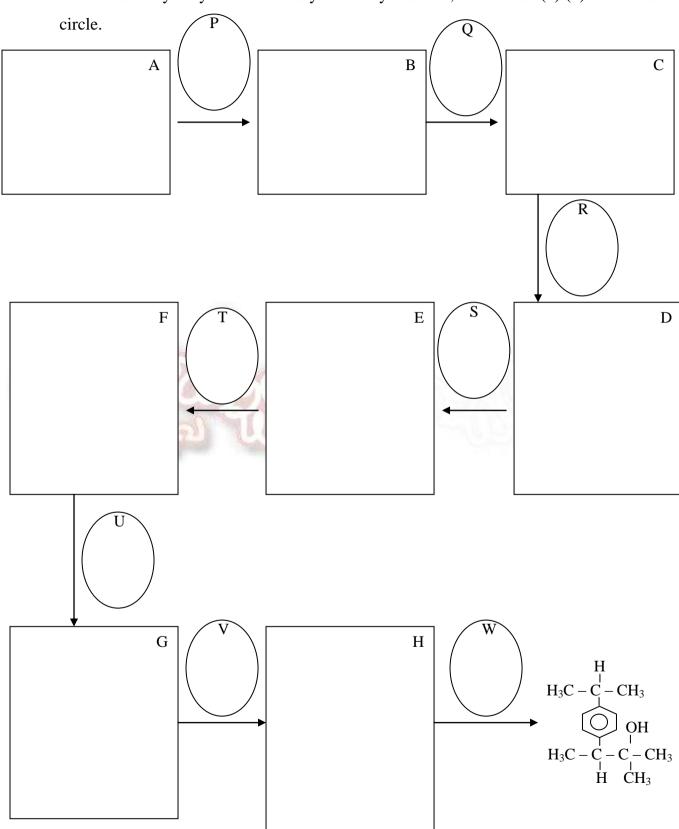
General Certificate of Education (Adv. Level) Examination, 2010

අධායන පොදු සහතික පතු (උසස් පෙළ) විභාගය 2010

Grade 13 - Final Term Test July 2010

13 වන ශේණිය අවසාන වාර පරීක ණය 2010 ජූලි

Chemistry II Part A – Structured Essay

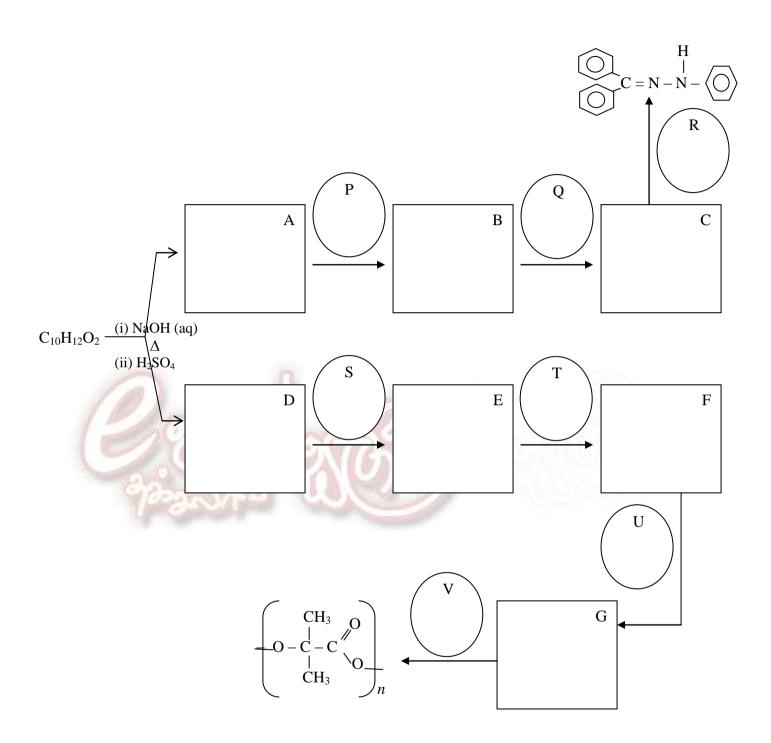

Time - 3 Hours

					,	••••••
Con	sider Na, Mg, Al, Si, P,	S, Cl, Ar wh	nich belong	only to the th	nird period.	
i)	Element that has the m	aximum thir	d ionization	energy.		
ii)	Element that shows the		1 300 Tale 7	L.es		
iii)						
iv)	Element/s that shows/s					
v)	One element react with two elements with the compound in a box giv	oxidation n		•	•	
	Oxidation no	-2	-1	+1	+2	+4
	Compound					
vi)	Compound contains tw	vo elements	reacts with	water and p	produces tri	basic

hybı	ridization of the central ato	om with the aid of the shap	e of the molecule
		BeF_3^-	BeF_4^{2-}
Geo	metrical shape		
hybi	ridization of the central ato	om	
Drav	w three possible stable re et rule". Draw them in the	esonance structures to N_2	Sing the molecular spectroscop O if all the atoms obey to the value to the lone pairs by using pair of
	\leftrightarrow		\leftrightarrow
			(aq) gives Cu^{2+} (aq) , M^{2+} (aq)
	War and War and All an		m^{-3} of MO_4^- to react completel
	1.335g of the hydrated sa		Cu = 63.5 S = 32)
i)	Write oxidizing agent ha	ii reaction.	
ii)	Write the reducing agent	half reaction.	
iii)	Write oxidation reduction	n reaction.	
iv)	What is the mass of Cu ₂ S	S in hydrated salt.	

	v)	What is the value of "x"
(b)		gas is industrially produced by nitrogen gas and hydrogen gas. Equation for the e reaction as follows.
	i)	$N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$ Write an expression to show the relationship between the reaction rate (R) and concentration of components.
	ii)	Initial partial pressures of $N_2(g)$ and $H_2(g)$ are P_{N_2} and P_{H_2} respectively. Derive an
		expression to show the relationship between reaction rate (R) and partial pressures by using the above (i) expression.
	iii)	Give two assumptions that you made when deriving the above (ii) relationship.
	iv)	"Reaction rate increases when the partial pressures of the reactants increase" Explain the statement according to the chemical kinetics.
	v)	Complete the following statements related with the above reaction.
		I. Rate of consumption of $N_2(g)$ is times of the rate of consumption of $H_2(g)$. II. Rate of consumption of $N_2(g)$ istimes of the rate of
	Fi	nd more: chemistrysabras.weebly.com

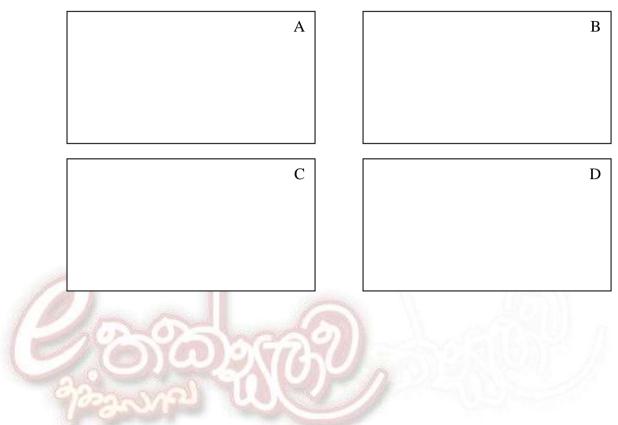
(3)(a) Synthesis the compound given below by using the relevant compounds among Mg, PCl₅, H₂O, anhydrous AlCl₃, LiAlH₄, KMnO₄, conc. H₂SO₄, CH₃-CH=CH₂, CH₃COCH₃, CH₃COCl, C₆H₆, C₂H₅OC₂H₅. Write the compounds in boxes and reagents in circles. If hydrolysis is necessary after any reaction, write it as (1)/(2) in the same



(b)	Ansv	wer the following	ng questions by using th	e give	en reactants and reagents.
	(A)	CH ₃ CH ₂ CHO	KOH(aq)	(B)	CH ₃ COCH ₃ NH ₂ OH→
	(C)	CH ₃ COCl	C ₆ H ₅ OH	(D)	CH₃CH=CH₂—ICl
	(E)	NO ₂	conc. HNO ₃		

	Final organic product	Species that attack the initial organic compound	Name of the mechanism of the reaction
A			
В			
C			
D		95777V	3687/
E	والمحادث		

(c)	How do you separate the mixture of $H_3C-C-NH_3Cl$ and $CH_3CH_2CH_2CH_2NH_3Cl$, CH_3
	using the necessary compounds given below.
	H ₂ SO ₄ , NaNO ₂ , HCl, PCl ₅ , AgNO ₃ , NaOH, KMnO ₄


Complete the following reaction paths by putting correct compound in boxes and correct (4)(a)reagents in circle.

(b)	Complete combustion of 0.20 mol of an organic compound A, evolves 0.80 mol of CO ₂
	and 0.60 mol of water. 60.00 cm ³ of 0.25 mol dm ⁻³ NaOH solution was required to
	neutralize 25.00 cm ³ of 0.30 mol dm ⁻³ of solution A.

i)	Find the molecular formula of A by using the data given above.
ii)	Give possible structures for "A".
iii)	Give IUPAC nomenclature for the following compound.
	COOH H H H H O H_3C $-C$ $-C$ $-C$ $-C$ $-C$ $-C$ $-C$ $-$
	H H C_6H_5 C
	$\overset{C}{\operatorname{CH}}_3$

(c) Compound "A" having $C_8H_{15}ON$ molecular formula shows optical isomerism. Further it shows geometrical isomerism. When it is heated with H_2/Ni produces $C_8H_{19}N$, compound "B", which shows neither optical isomerism nor geometrical isomerism. When A is heated with NaOH(aq), produces NH_3 and C . Addition of dil H_2SO_4 to C produces "D". Draw the structures for A, B, C and D in the following boxes.

Royal College Colombo 07

රාජකීය විදාහලය කොළඹ 07

General Certificate of Education (Adv. Level) Examination, 2010

අධායන පොදු සහතික පතු (උසස් පෙළ) විභාගය 2010

Grade 13 - Final Term Test July 2010

13 වන ශේණිය අවසාන වාර පරීකෳණය 2010 ජූලි

Chemistry II Part B - Essay

Answer two questions only.

- (5)(a)i) Define the following standard enthalpies and give thermo chemical equation for each.
 - I. Standard enthalpy of formation $\Delta H_f^0 H_2SO_4(l)$; 194 kJ mol⁻¹
 - II. Standard enthalpy of hydration ΔH_{hyd} Na⁺(aq); 390 kJ mol⁻¹
 - III. Standard lattice enthalpy $\Delta H_1 \text{ MgCl}_2$; 2502 kJ mol⁻¹
 - ii) CaC₂(s) is produced by heating C(s) and CaO(s) in electric arc furnace Standard enthalpies of CaO(s), CaC₂(s), CO₂(g) are 668 kJ mol⁻¹, 798 kJ mol⁻¹, 393 kJ mol⁻¹. By using the given data above, calculate the enthalpy of the following reactions using enthalpy diagram.

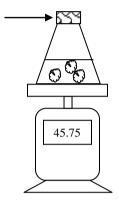
$$2CaO + 5C(s) \rightarrow 2CaC_2(s) + CO_2(g)$$

iii)
$$CaC_2(s) + 2H_2O(l) \rightarrow Ca(OH)_2(aq) + C_2H_2(g)$$

Standard enthalpies of formation of $\Delta H_f H_2O(1)$, $\Delta H_f Ca(OH)_2$ (aq), and $\Delta H_f C_2H_2$ are -286 kJ mol⁻¹, -991.1 kJ mol⁻¹, and +227 kJ mol⁻¹. Calculate the enthalpy change with relevant to the reaction between 1mol of CaC₂ and water by using the above data.

$$\label{eq:c2H2} \text{iv)} \qquad \qquad C_2 H_2(g) + \frac{5}{2} \, O_2 \, (g) \, \to \, 2 \text{CO}_2 \, (g) + 2 H_2 O(l)$$

Calculate the enthalpy of combustion related to the above reaction by using the thermo chemical data given in above parts.


(b) Consider the following equilibrium.

$$COCl_2(g) \Longrightarrow CO(g) + C1_2(g)$$

- 0.1 mol of COCl₂(g) introduced in to a closed vessel which has volume V, was allowed to reach equilibrium at 400°C. Total pressure was 2x10⁵ Pa in the equilibrium mixture. Percentage dissociation of COCl₂(g) was 25% from the initial amount.
- i) Calculate the mole fractions of each component in equilibrium mixture.
- ii) Calculate the partial pressures of COCl₂, CO and Cl₂ in equilibrium mixture.
- iii) Calculate Kp and Kc of the equilibrium system at 400°C
- iv) Calculate the partial pressures and the total pressure of the mixture if 0.1mol of He is introduced in to the vessel.
- v) Calculate the degree of dissociation of $COCl_2$ (g) if the volume is reduced to V/2.

- (c) Student was planned the following experiment to determine the rate of a reaction between CaCO₃(s) and HCl.
 - CaCO₃(s) (marble chips) was taken to the flask and dil HCl was added to it and closed with the cotton wool plug. He was put it on the electronic balance and was taken the reading after every 10 seconds.

Cotton wool plug

	Time seconds	mass g
1	0	200.00
2	10	191.00
3	20	183.50
4	30	178.50
5	40	174.25
6	50	170.50
7	60	167.25
8	70	164.00
9	80	164.00
10	90	164.00
11	100	164.00

- i) Plot a graph mass Vs time.
- ii) According to the graph at what time the reaction is ceased after mixing.
- iii) What is the criteria that can be used to measure the rate of a reaction.
- iv) Mark the change of reaction rate with time in the graph. Which quantity shows the rate of the reaction.
- d) Different volumes of 1 mol dm⁻³ solution and water were mixed according to the following table and added same shaped equal amounts of piece of CaCO₃(s). Mass reduction after 20 s was recorded. Determine the order of the reaction with respect to HCl.

1 mol HCl ml	water ml	mass reduction after 20			
10	90	0.20 g			
20	80	0.87 g			
30	70	1.78 g			
40	60	3.56 g			
50	50	3.56 g 4.96 g			
60	40	7.18 g			

- Define the term "buffer solution"? Expalin how a buffer solution resist changes in pH, if (6)(a)small amounts of acid or base solutions were added, using an example?
 - (ii)
 - Calculate the of pH of 0.22 mol dm⁻³ C₂H₅COOH solution, pKa 4.87 at 25^oC A solution made by adding 100 cm³ of 0.22 mol dm⁻³ C₂H₅COOH solution to 100 cm³ of 0.10 mol dm⁻³ solution NaOH. Calculate the pH of the resultant solution?
 - 25.00 cm³ of a weak acid HX of concentration 0.10 mol dm⁻³ was titrated with 0.10 mol dm⁻³ sodium hydroxide solution, and the pH measured at intervals. The results are set out below.

volume of sodium hydroxide cm ³	5	10	12	20	23	24	25	26	30
pН	4.5	4.8	4.9	5.5	6.5	7.0	9.0	12.0	12.5

- I. Draw a titration curve and use it to calculate the Pk_a for the acid HX
- Suggest a suitable indicator for the titration? II.
- The solubility product of $\mbox{ Ag}_2\mbox{C}_2\mbox{O}_4$ at $25^0\mbox{C}$ is $\mbox{ 1.29 x }10^{\text{-}11}\mbox{ mol}^3\mbox{ dm}^{\text{-}9}$. A solution of $\mbox{ K}_2\mbox{C}_2\mbox{O}_4$ (b) containing 0.1520 mol in 500 cm³ water, is shaken with excess of Ag₂CO₃ till the following equilibrium will be reached.

$$Ag_2CO_3(s) + K_2C_2O_4(aq) \iff Ag_2C_2O_4(s) + K_2CO_3(aq)$$

At equilibrium the solution contains 0.0358 mol of K₂CO₃. Assuming the degree of dissociation of $K_2C_2O_4$ and K_2CO_3 to be equal, calculate the solubility product of Ag_2CO_3 (s)

- A weak mono acid base "B" is in the equilibrium between an organic solvent. "L" and water at 298 K. 5 cm³ of 0.2 mol dm⁻³ HCl solution is required to titrate the 10 cm³ of aqueous layer and 2.5 cm³ of 0.1 mol dm⁻³ HCl solution is required to titrate the 25 cm³ of organic solvent " L"
 - i) Calculate the partition coefficient of B between water and L
 - Calculate the dissociation constant K_b of "B" $K_{\rm w}$ at 298 K is $K_{\rm w} = 1 \times 10^{-14} \, {\rm mol}^2 \, {\rm dm}^{-6}$
- Sample of molten CuBr₂ is electrolyzed with the presence of C electrodes. When 1A is passed (7)(a)through the electrolyte in 30 s, mass of the electrode increased by 0.508 g. $(Cu = 63.5, Br = 80.0 \text{ charge of an electron } 1.6 \times 10^{-19} \text{C})$
 - How do you recognize the cathode and anode of the electrolytic cell.
 - Write the balanced half ionic equations for the reactions occur near anode and cathode. ii)
 - What quantity of electricity is required to produce one mole of Cu at the respective iii) electrode.
 - Calculate a value for Avogadro's constant by using the experimental results and data. iv)
 - Explain one reason if the calculated value in (iv) is different from the standard value. v)
 - Can we do the same calculation for Avogadro's constant as the above if the electrolysis of vi) CuBr₂(aq) is done through long period of time.
 - Standard chemical cell is prepared by the standard electrode containing A^{4+} (aq) / A^{2+} (aq) ions and B $^{3+}$ (aq) / B $^{2+}$ (aq). Standard electrode potentials of that electrodes are 0.15V and 0.77V respectively.
 - State anode and cathode of the above electro chemical cell clearly. i)
 - ii) What is the most suitable instrument to measure the electro motive force of the above cell
 - Give the reactions occur near anode and cathode and the cell reaction?
 - iv) Give the standard cell diagram.
 - Calculate the electromotive force of the cell. v)
 - vi) If small amount of H₃PO₄ is added to the ionic solution B which is considered as iron, is

there any effect or not on electromotive force force and electromotive force and electromotive

- (c) Consider the mixture of n- hexane and n-heptane behave as ideal.
 - i) Plot a graph temperature Vs. liquid composition at constant pressure and mark following things on it. Saturated Vapour pressures of n-hexane and n-heptane are P_{hexane} and P_{heptane} respectively.
 - Composition of n-heptane when the mole fraction is 0.8, is m_1 . Standard boiling point at composition of m_1 is T_1 . Composition of vapour of the solution which boils at T_1 in equilibrium is n_1 . Composition of n_1 distillate is m_2 . Standard boiling temperature of liquid m_2 is T_2 . Composition of the vapour of the liquid boils at T_2 is n_2 .
 - ii) Explain composition of m_1 can be separated out by using fractional distillation with the use of boiling point composition curve.
 - iii) What is the instrument that can use to the above process (II)
 - iv) State the law related to the above process.
 - v) Can we use the above principle to extract citronell oil. Explain.

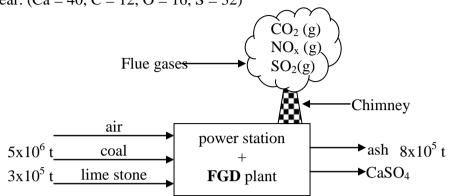
C Part Essay

- (8)(a) Consider four elements Fe, Cr, Mg and Al.
 - i) Which blocks of the periodic table each element belongs to.
 - ii) State four physical or chemical properties of transitional elements among the above elements.
 - iii) Give one example related with the above properties
 - iv) Name three soils that contain iron
 - v) Name two other things mix with the soil use in iron exaction.
 - vi) Write down five relevant balanced chemical equations for the reactions occur in the blast furnance.
 - vii) Write down the half reactions for rusting of iron and state anodic and cathodic reactions clearly.
 - viii) Give two methods that can use Cr to prevent rusting of iron.
 - ix) Write down the relevant balanced chemical equations for the preparation of aqueous $Cr_2O_7^{2-}$ solution starting with Cr.
 - x) Briefly explain how the process of iron containg certain component in a body changes due to NO₃ ion containing drinking water.
 - xi) How do you show that Fe³⁺ and Fe²⁺ ions contain in the aqueous solution containing Fe and Cr, at laboratory.
 - (b) Costic Soda (NaOH) the can be produced by using sea water Cl₂ evolves as one byproduct. High percentage of NaOH is used for soap production. NaOH liquid required for the soap production being sent to market as it is.
 - i) State the most important steps of NaOH production (States and balanced equations are required).
 - ii) Give two other byproducts of NaOH production.
 - iii) Name three industrial or domestic products of Cl₂. Give uses of each. (Uses must differ from each other).
 - iv) What are the affects of chlorine containing products in (III) to the environment. Explain.
 - v) Give two advantages of introducing NaOH which is used to the soap production, in liquid form to the market.
 - vi) Name other three substances that use in the production of soap with NaOH.

- (9)(a) Sample of 1.00 g of vulcanized rubber containing the oxide of a certain element, burnt completely and the evolved gas was reacted with excess of Br₂ and steam. Solution gained was acidified with dil. HNO₃ and was added excess of BaCl₂ solution. Precipitate formed was filtered, dried and weighed. Mass of the precipitate was 0.739 g precipitate formed by combustion was dissolved in dil HCl. Excess of NH₃ was added and H₂S was bubbled. Then clear white precipitate was formed and it was filtered, dried and weighted. Mass was 0.055 g.
 - i) Write down all the relevant balanced equations for the above process.
 - ii) Write the structural formulae of monomer and polymer of rubber.
 - iii) State the structural difference occurred in rubber after vulcanization.
 - iv) Deduce the oxide that has added to the vulcanization.
 - v) Name one filling agent is added to the rubber.
 - vi) Calculate the mass percentage of S in the sample.
 - vii) Calculate the mass percentage of the oxide in the sample. R.m.m. of the oxide of the element = 81 Ba = 137 S = 32 O = 16 C = 12R.m.m. of the sulphide of the element = 97 Cl = 35.5 Br = 80 H = 1 N = 14
 - (b) Structure of caprolactam is given below.

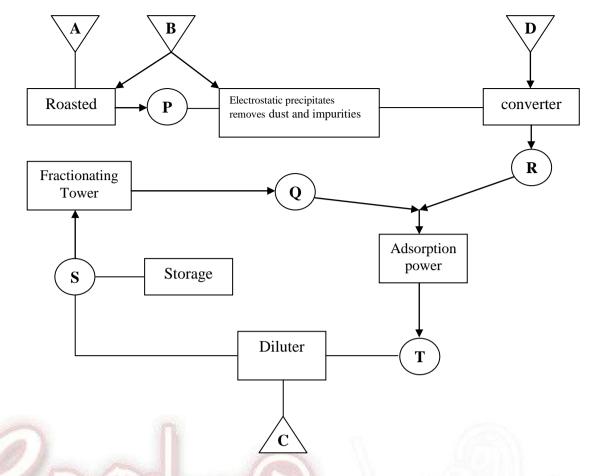
$$CH_2 - CH_2 - C$$

$$CH_2 - CH_2 - NH$$


$$CH_2 - CH_2$$

Useful polymer can be produced by the polymerization of the product, gained by the hydrolysis of the above compound in the basic medium.

- i) Write the structural formula of caprolactam produced by hydrolysis.
- ii) Using the above structure as the monomer, draw its polymer and name it.
- iii) Why is that polymer doesen't wet with water.
- (c) Sulphunic acid can be produced by the byproducts removed from purification process of crude oil. Considerable percentage of the purified crude oil is used as a fuel. Use anti knocking agents to increase the fuel efficiency.
 - i) What do you mean by "cracking of petroleum"
 - ii) Name the main elemental pollutant releases to the atmosphere by the combustion of petrol.
 - iii) Name four gaseous pollutants is added to the environment by the fuel combustion.
 - iv) Explain the affect of the two pollutants to the environment.
- (d) Consider the chlorides of NCl₃, PCl₃ and BiCl₃
 - i) Give balanced chemical equations for the hydrolysis of the above chlorides.
 - ii) Deduce the electro negativity changes according to N>C1>Bi by using the products gained by hydrolysis.
 - iii) Based on two basic characters of oxides derived from the maximum oxidation state of N,P and Bi, show how the electro positivity of an element increases with the increasing atomic number of a group.


(10)(a) A coal - fired power station is fitted with a flue gas desulphurization (FGD) plant, which removes some of the sulphur dioxide from waste gases.

In the FGD plant, the waste gases are treated with powdered limestone (CaCO₃) producing CaSO₃ this is oxidized by air to form solid CaSO₄ (s). The diagram below shows the amounts of substances used. and produced by such a coal - fired power station with an FGD plant in one year. (Ca = 40, C = 12, O = 16, S = 32)

- i) I. What process provides the energy used in the power station?
 - II. Which gas, not visited in the diagram, is the chief component of the flue gases?
 - III. Explain why oxide of nitrogen (NO_x) are present in the flue gases.
- ii) Write a balanced equation in each case to show
 - I. lime stone reacts with SO_2
 - II. CaSO₃ is oxidized by air
- iii) I. Using the equation in (ii) (I) to determine the maximum mass of SO_2 which could be removed by $3x10^5$ of lime stone in the FGD plant. (1 t = 1000 kg)
 - II. Use the equation in (iii) to determine the maximum mass of $CaSO_4$ which would be produced from the $3x10^5$ of tons of lime stone.
- iv) The FGD plant removes 90% of the SO_2 from the waste gases using for your answer to (iii)(I). Calculate the mass of SO_2 which is released into the atmosphere each year by this power station when 5×10^6 t of coal are burnt.
- v) What are the other things that you get except CaSO₄ when effluent gases treated with CaCO₃.
- vi) Suggest two possible disadvantages of the use of an FGD plant. (Ca = 40, S = 32, C = 12)

Answer the following questions using above flow chart given above for contact process in the manufacture of H₂SO₄.

- i) Write the starting material used in the triangle A, B, C.
- ii) Write the catalyst used in converter in triangle D.
- iii) Write the chemical formulae of substances in proper circles P,Q, R, S, T.
- iv) Write the structural formulae for compound T.
- v) Give the conditions used in converter.
- vi) Give two industrial uses of H₂SO₄.
- vii) Write the chemical balanced equations for all reactions occur in this process.